A Least Squares Fitting Method for Uncertain Parameter Estimation in Solidification Model

被引:1
|
作者
Wang, Yuhan [1 ]
Xie, Zhi [1 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110819, Peoples R China
关键词
equiaxed crystal ratio; solidification model; fitted parameters; parameter estimation model; least squares; NUMERICAL-SIMULATION; DENDRITIC GROWTH; STAINLESS-STEEL; ALLOY; TRANSITION; COLUMNAR;
D O I
10.3390/cryst13121673
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
This study proposes an automated method for estimating the uncertain parameters of the solidification model in response to the inefficient and time-consuming problem of manually estimating multiple uncertain parameters of the solidification model. The method establishes an uncertain parameter estimation model based on the relationship between the simulated images equiaxed crystal ratio and the uncertain parameters of the solidification model, fits the parameters of the model by the least squares method, and finally estimates the uncertain parameters in the solidification model using the parameters of the fitted model. In comparison with the traditional method of calculating uncertain parameters manually through empirical formulas, this method reduces the difficulty of tuning parameters and solves the problem of tuning multiple parameters simultaneously in the nonlinear solidification model. The experimental results show that the proposed method can accurately estimate the uncertain parameters of the solidification model, improve the efficiency and accuracy of the solidification model estimation parameters, and play a guiding role in simulating the solidification process of continuously casting billet to control the solidification structure.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A least squares method in back fitting the data base of a simulation model
    Dall'Osso, A
    ADVANCES IN ENGINEERING SOFTWARE, 2002, 33 (11-12) : 743 - 748
  • [22] LEAST-SQUARES NONLINEAR PARAMETER ESTIMATION BY ITERATIVE CONTINUATION METHOD
    KIRSZENBLAT, A
    CHETRIT, M
    AIAA JOURNAL, 1974, 12 (12) : 1751 - 1752
  • [23] A weighted least-squares method for parameter estimation in structured models
    Galrinho, Miguel
    Rojas, Cristian
    Hjalmarsson, Hakan
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3322 - 3327
  • [24] Adaptive recursive least squares method for parameter estimation of autoregressive models
    Javed, Shazia
    Nazir, Ghida
    Chaudhry, Nazir Ahmad
    Akgul, Ali
    Tabassum, Muhammad Farhan
    INTERNATIONAL JOURNAL OF APPLIED NONLINEAR SCIENCE, 2023, 4 (01) : 72 - 89
  • [25] MRF Parameter Estimation Based on Weighted Least Squares Fit Method
    Wu, Jinyan
    Yang, Bo
    Wang, Lin
    Ma, Kun
    Zhao, Xiuyang
    Zhou, Jin
    IEEE ICCSS 2016 - 2016 3RD INTERNATIONAL CONFERENCE ON INFORMATIVE AND CYBERNETICS FOR COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2016, : 164 - 169
  • [26] Jackknife resampling parameter estimation method for weighted total least squares
    Wang, Leyang
    Yu, Fengbin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (23) : 5810 - 5828
  • [27] PARAMETER ESTIMATION FOR A MULTIPLICATIVE COMPETITIVE INTERACTION MODEL - LEAST SQUARES APPROACH
    NAKANISHI, M
    COOPER, LG
    JOURNAL OF MARKETING RESEARCH, 1974, 11 (03) : 303 - 311
  • [28] An implicit least squares algorithm for nonlinear rational model parameter estimation
    Zhu, QM
    APPLIED MATHEMATICAL MODELLING, 2005, 29 (07) : 673 - 689
  • [29] LEAST-SQUARES PARAMETER-ESTIMATION IN FISH BEHAVIOR MODEL
    SANNOMIYA, N
    MATUDA, K
    NIPPON SUISAN GAKKAISHI, 1987, 53 (11) : 1951 - 1957
  • [30] Least Squares Parameter Estimation for Sparse Functional Varying Coefficient Model
    Behdad Mostafaiy
    Mohammad Reza Faridrohani
    Journal of Statistical Theory and Applications, 2017, 16 (3): : 337 - 344