A Least Squares Fitting Method for Uncertain Parameter Estimation in Solidification Model

被引:1
|
作者
Wang, Yuhan [1 ]
Xie, Zhi [1 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110819, Peoples R China
关键词
equiaxed crystal ratio; solidification model; fitted parameters; parameter estimation model; least squares; NUMERICAL-SIMULATION; DENDRITIC GROWTH; STAINLESS-STEEL; ALLOY; TRANSITION; COLUMNAR;
D O I
10.3390/cryst13121673
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
This study proposes an automated method for estimating the uncertain parameters of the solidification model in response to the inefficient and time-consuming problem of manually estimating multiple uncertain parameters of the solidification model. The method establishes an uncertain parameter estimation model based on the relationship between the simulated images equiaxed crystal ratio and the uncertain parameters of the solidification model, fits the parameters of the model by the least squares method, and finally estimates the uncertain parameters in the solidification model using the parameters of the fitted model. In comparison with the traditional method of calculating uncertain parameters manually through empirical formulas, this method reduces the difficulty of tuning parameters and solves the problem of tuning multiple parameters simultaneously in the nonlinear solidification model. The experimental results show that the proposed method can accurately estimate the uncertain parameters of the solidification model, improve the efficiency and accuracy of the solidification model estimation parameters, and play a guiding role in simulating the solidification process of continuously casting billet to control the solidification structure.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Surface fitting and parameter estimation with nonlinear least squares
    Umea Univ, Umea, Sweden
    Optim Method Software, 3 (247-269):
  • [2] ON PARAMETER ESTIMATION IN THE BASS MODEL BY NONLINEAR LEAST SQUARES FITTING THE ADOPTION CURVE
    Markovic, Darija
    Jukic, Dragan
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (01) : 145 - 155
  • [3] Robust Total Least Squares Estimation Method for Uncertain Linear Regression Model
    Shi, Hongmei
    Zhang, Xingbo
    Gao, Yuzhen
    Wang, Shuai
    Ning, Yufu
    MATHEMATICS, 2023, 11 (20)
  • [4] A Parameter Estimation Method using Nonlinear Least Squares
    Oh, Suna
    Song, Jongwoo
    KOREAN JOURNAL OF APPLIED STATISTICS, 2013, 26 (03) : 431 - 440
  • [5] Parameter estimation with discrete linear least squares method
    Wu, LC
    Lee, WC
    Huang, CL
    Wang, JK
    Chiu, PF
    Liu, RS
    MODELLING AND CONTROL IN BIOMEDICAL SYSTEMS 2003 (INCLUDING BIOLOGICAL SYSTEMS), 2003, : 135 - 138
  • [6] Uncertain least squares estimation model based on relative error
    Wang, Shuai
    Ning, Yufu
    Huang, Hong
    Chen, Xiumei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (05) : 8281 - 8290
  • [7] Least-squares estimation for uncertain moving average model
    Yang, Xiangfeng
    Ni, Yaodong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (17) : 4134 - 4143
  • [8] A Source Number Estimation Method Based on Total Least Squares Fitting
    Lan Xiaoyu
    PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 1275 - 1278
  • [9] ON THE WEIGHTED LEAST-SQUARES METHOD FOR FITTING A SEMIVARIOGRAM MODEL
    ZHANG, XF
    VANEIJKEREN, JCH
    HEEMINK, AW
    COMPUTERS & GEOSCIENCES, 1995, 21 (04) : 605 - 608
  • [10] Method of least squares and curve fitting
    Uhler, HS
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA AND REVIEW OF SCIENTIFIC INSTRUMENTS, 1923, 7 (11): : 1043 - 1066