ERNet: Edge Regularization Network for Cerebral Vessel Segmentation in Digital Subtraction Angiography Images

被引:0
|
作者
Xu, Weijin [1 ]
Yang, Huihua [1 ]
Shi, Yinghuan [2 ]
Tan, Tao [3 ,4 ]
Liu, Wentao [1 ]
Pan, Xipeng [5 ]
Deng, Yiming [6 ]
Gao, Feng [6 ]
Su, Ruisheng [7 ]
机构
[1] Beijing Univ Posts & Telecommun, Coll Artificial Intelligence, Beijing 100876, Peoples R China
[2] Nanjing Univ, Dept Comp Sci & Technol, Nanjing 210008, Peoples R China
[3] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
[4] Netherlands Canc Inst NKI, Dept Radiol, NL-1066 CX Amsterdam, Netherlands
[5] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
[6] Capital Med Univ, Beijing TianTan Hosp, Beijing 100070, Peoples R China
[7] Erasmus MC, Univ Med Ctr Rotterdam, Dept Radiol & Nucl Med, NL-3015 GD Rotterdam, Netherlands
基金
中国国家自然科学基金;
关键词
Image segmentation; Feature extraction; Image edge detection; Transformers; Arteries; Erosion; Convolution; Cerebral vessel segmentation; edge regularization; stroke; digital subtraction angiography; DSA IMAGES; ATTENTION; TRACKING;
D O I
10.1109/JBHI.2023.3342195
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stroke is a leading cause of disability and fatality in the world, with ischemic stroke being the most common type. Digital Subtraction Angiography images, the gold standard in the operation process, can accurately show the contours and blood flow of cerebral vessels. The segmentation of cerebral vessels in DSA images can effectively help physicians assess the lesions. However, due to the disturbances in imaging parameters and changes in imaging scale, accurate cerebral vessel segmentation in DSA images is still a challenging task. In this paper, we propose a novel Edge Regularization Network (ERNet) to segment cerebral vessels in DSA images. Specifically, ERNet employs the erosion and dilation processes on the original binary vessel annotation to generate pseudo-ground truths of False Negative and False Positive, which serve as constraints to refine the coarse predictions based on their mapping relationship with the original vessels. In addition, we exploit a Hybrid Fusion Module based on convolution and transformers to extract local features and build long-range dependencies. Moreover, to support and advance the open research in the field of ischemic stroke, we introduce FPDSA, the first pixel-level semantic segmentation dataset for cerebral vessels. Extensive experiments on FPDSA illustrate the leading performance of our ERNet.
引用
收藏
页码:1472 / 1483
页数:12
相关论文
共 50 条
  • [21] DIGITAL SUBTRACTION ANGIOGRAPHY WITH DYNAMIC COLOR FUNCTION IMAGES
    HAENDLE, H
    HAENDLE, J
    MAASS, W
    FINKLER, K
    DIGITALE BILDDIAGNOSTIK, 1984, 4 (04): : 153 - 157
  • [22] Evaluating a 3D deep learning pipeline for cerebral vessel and intracranial aneurysm segmentation from computed tomography angiography-digital subtraction angiography image pairs
    Patel, Tatsat R.
    Patel, Aakash
    Veeturi, Sricharan S.
    Shah, Munjal
    Waqas, Muhammad
    Monteiro, Andre
    Baig, Ammad A.
    Pinter, Nandor
    Levy, Elad I.
    Siddiqui, Adnan H.
    Tutino, Vincent M.
    NEUROSURGICAL FOCUS, 2023, 54 (06)
  • [23] DFA-Net: Dual multi-scale feature aggregation network for vessel segmentation in X-ray digital subtraction angiography
    Deng, He
    Liu, Xu
    Fang, Tong
    Li, Yuqing
    Min, Xiangde
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [24] DSNet: A Spatio-Temporal Consistency Network for Cerebrovascular Segmentation in Digital Subtraction Angiography Sequences
    Xie, Qihang
    Zhang, Dan
    Mou, Lei
    Wang, Shanshan
    Zhao, Yitian
    Guo, Mengguo
    Zhang, Jiong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VIII, 2024, 15008 : 199 - 208
  • [25] A deep learning method to identify and localize large-vessel occlusions from cerebral digital subtraction angiography
    Warman, Roshan
    Warman, PranavI.
    Warman, Anmol
    Bueso, Tulio
    Ota, Riichi
    Windisch, Thomas
    Neves, Gabriel
    JOURNAL OF NEUROIMAGING, 2024, 34 (03) : 366 - 375
  • [26] DIGITAL SUBTRACTION CEREBRAL-ANGIOGRAPHY BY INTRAARTERIAL INJECTION - COMPARISON WITH CONVENTIONAL ANGIOGRAPHY
    BRANTZAWADZKI, M
    GOULD, R
    NORMAN, D
    NEWTON, TH
    LANE, B
    AMERICAN JOURNAL OF ROENTGENOLOGY, 1983, 140 (02) : 347 - 353
  • [27] Digital Subtraction Angiography Generation with Deep Decoupling Network
    Liu, Ruibo
    Wang, Li
    Ma, He
    Qian, Wei
    Liang, Guobiao
    Chu, Guangxin
    Jin, Hai
    TRAITEMENT DU SIGNAL, 2024, 41 (04) : 2169 - 2175
  • [28] Utility of Screening for Cerebral Vasospasm Using Digital Subtraction Angiography
    Arias, Eric J.
    Vajapey, Sravya
    Reynolds, Matthew R.
    Chicoine, Michael R.
    Rich, Keith M.
    Dacey, Ralph G., Jr.
    Dorward, Ian G.
    Derdeyn, Colin P.
    Moran, Christopher J.
    Cross, DeWitte T., III
    Zipfel, Gregory J.
    Dhar, Rajat
    STROKE, 2015, 46 (11) : 3137 - 3141
  • [29] Cerebral Hemorrhage Identifying the Causes during digital Subtraction Angiography
    Meinrenken, Susanne
    FORTSCHRITTE DER NEUROLOGIE PSYCHIATRIE, 2016, 84 (02) : 64 - 64
  • [30] IODIXANOL IN INTRAARTERIAL CEREBRAL DIGITAL SUBTRACTION ANGIOGRAPHY - A COMPARISON WITH IOHEXOL
    KENDALL, BE
    SHEPPICK, A
    NOSSEN, JO
    STEVENS, JM
    NEURORADIOLOGY, 1995, 37 (07) : 512 - 514