Multi-Instance Attention Network for Anomaly Detection from Multivariate Time Series

被引:1
|
作者
Jang, Gye-Bong [1 ]
Cho, Sung-Bae [1 ]
机构
[1] Yonsei Univ, Dept Comp Sci, Seoul, South Korea
关键词
Anomaly detection; deep learning; fault diagnosis; hierarchical prediction; hydraulic equipment; prognostics and health;
D O I
10.1080/01969722.2023.2240651
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection and state prediction research using multivariate data is being actively conducted in various industrial fields. However, since most dynamically operating industrial machines perform different operating conditions, they contain different types of abnormal conditions, making it difficult to detect anomalies and predict the remaining life. This white paper proposes a condition diagnosis model based on multi-sensor data prediction for estimating the remaining lifespan of equipment while solving two complex problems of detecting four typical abnormal conditions and sensor omissions of industrial machines. First, we use a multi-sensor data generation model to learn relationships between sensors, and second, we use a sensor data prediction model to learn sensor-specific feature information. In order to extract the temporal and spatial characteristics of sensing information and to derive the relationship between the sensors, we propose an attention model with three types of cases. Finally, the state of the device is diagnosed through the difference between the model predicted value and the actual value, and future state information of the device is predicted through the accumulation of error information. In order to prove the robustness of the proposed model, extensive experiments were conducted focusing on the case where sensor omission occurred due to data from equipment with more than 4 types and conditions. Our model produces missing sensor data with about 92% accuracy and detects anomalies with about 88% accuracy, even if parts of the sensor are missing or the operating environments have been changed. The proposed model has improved anomaly detection accuracy compared to the comparative model, and has been proven to be applicable to real industrial problems.
引用
收藏
页码:1417 / 1440
页数:24
相关论文
共 50 条
  • [41] Multivariate Time Series Anomaly Detection Based on Reconstructed Differences Using Graph Attention Networks
    Kang, Jung Mo
    Kim, Myoung Ho
    FRONTIERS OF COMPUTER VISION, IW-FCV 2024, 2024, 2143 : 58 - 69
  • [42] DTAAD: Dual Tcn-attention networks for anomaly detection in multivariate time series data
    Yu, Ling-rui
    Lu, Qiu-hong
    Xue, Yang
    KNOWLEDGE-BASED SYSTEMS, 2024, 295
  • [43] Self-attention-based graph transformation learning for anomaly detection in multivariate time series
    Wang, Qiushi
    Zhu, Yueming
    Sun, Zhicheng
    Li, Dong
    Ma, Yunbin
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (05)
  • [44] MTS-GAT: multivariate time series anomaly detection based on graph attention networks
    Chen, Ling
    Mao, Yingchi
    Zhou, Hongliang
    Zhang, Benteng
    Wang, Zicheng
    Wu, Jie
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2023, 43 (01) : 38 - 49
  • [45] Multivariate time-series anomaly detection via temporal convolutional and graph attention networks
    He, Qiang
    Wang, Guanqun
    Wang, Hengyou
    Chen, Linlin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 5953 - 5962
  • [46] Hybrid Anomaly Detection via Multihead Dynamic Graph Attention Networks for Multivariate Time Series
    Zhou, Liwen
    Zeng, Qingkui
    Li, Bo
    IEEE ACCESS, 2022, 10 : 40967 - 40978
  • [47] Adaptive Multivariate Time-Series Anomaly Detection
    Lv, Jianming
    Wang, Yaquan
    Chen, Shengjing
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (04)
  • [48] Contextual anomaly detection for multivariate time series data
    Kim, Hyojoong
    Kim, Heeyoung
    QUALITY ENGINEERING, 2023, 35 (04) : 686 - 695
  • [49] Anomaly detection in multivariate time series of drilling data
    Altindal, Mehmet Cagri
    Nivlet, Philippe
    Tabib, Mandar
    Rasheed, Adil
    Kristiansen, Tron Golder
    Khosravanian, Rasool
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 237
  • [50] An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time Series
    Garg, Astha
    Zhang, Wenyu
    Samaran, Jules
    Savitha, Ramasamy
    Foo, Chuan-Sheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2508 - 2517