Multi-Instance Attention Network for Anomaly Detection from Multivariate Time Series

被引:1
|
作者
Jang, Gye-Bong [1 ]
Cho, Sung-Bae [1 ]
机构
[1] Yonsei Univ, Dept Comp Sci, Seoul, South Korea
关键词
Anomaly detection; deep learning; fault diagnosis; hierarchical prediction; hydraulic equipment; prognostics and health;
D O I
10.1080/01969722.2023.2240651
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection and state prediction research using multivariate data is being actively conducted in various industrial fields. However, since most dynamically operating industrial machines perform different operating conditions, they contain different types of abnormal conditions, making it difficult to detect anomalies and predict the remaining life. This white paper proposes a condition diagnosis model based on multi-sensor data prediction for estimating the remaining lifespan of equipment while solving two complex problems of detecting four typical abnormal conditions and sensor omissions of industrial machines. First, we use a multi-sensor data generation model to learn relationships between sensors, and second, we use a sensor data prediction model to learn sensor-specific feature information. In order to extract the temporal and spatial characteristics of sensing information and to derive the relationship between the sensors, we propose an attention model with three types of cases. Finally, the state of the device is diagnosed through the difference between the model predicted value and the actual value, and future state information of the device is predicted through the accumulation of error information. In order to prove the robustness of the proposed model, extensive experiments were conducted focusing on the case where sensor omission occurred due to data from equipment with more than 4 types and conditions. Our model produces missing sensor data with about 92% accuracy and detects anomalies with about 88% accuracy, even if parts of the sensor are missing or the operating environments have been changed. The proposed model has improved anomaly detection accuracy compared to the comparative model, and has been proven to be applicable to real industrial problems.
引用
收藏
页码:1417 / 1440
页数:24
相关论文
共 50 条
  • [21] Univariate Time Series Anomaly Detection Based on Hierarchical Attention Network
    Chen, Zexi
    Jia, Dongqiang
    Sun, Yushu
    Yang, Lin
    Jin, Wenjie
    Liu, Ruoxi
    TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (04): : 1181 - 1193
  • [22] ALAE: self-attention reconstruction network for multivariate time series anomaly identification
    Jiang, Kai
    Liu, Hui
    Ruan, Huaijun
    Zhao, Jia
    Lin, Yuxiu
    SOFT COMPUTING, 2023, 27 (15) : 10509 - 10519
  • [23] ALAE: self-attention reconstruction network for multivariate time series anomaly identification
    Kai Jiang
    Hui Liu
    Huaijun Ruan
    Jia Zhao
    Yuxiu Lin
    Soft Computing, 2023, 27 : 10509 - 10519
  • [24] Generative Anomaly Detection in Multivariate Time Series
    Hoh, M.
    Schöttl, A.
    Schaub, H.
    Leuze, N.
    Automation, Robotics and Communications for Industry 4.0/5.0, 2023, 2023 : 171 - 174
  • [25] Graph-Attention Diffusion for Enhanced Multivariate Time-Series Anomaly Detection
    Lanko, Vadim
    Makarov, Ilya
    IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY, 2024, 5 : 1353 - 1364
  • [26] GCFormer: Granger Causality based Attention Mechanism for Multivariate Time Series Anomaly Detection
    Xing, Shiwang
    Niu, Jianwei
    Ren, Tao
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1433 - 1438
  • [27] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [28] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    PeerJ Computer Science, 2024, 10
  • [29] A multi-instance LSTM network for failure detection of hard disk drives
    2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 709 - 712
  • [30] Graph Neural Network-Based Anomaly Detection in Multivariate Time Series
    Deng, Ailin
    Hooi, Bryan
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4027 - 4035