Multi-Instance Attention Network for Anomaly Detection from Multivariate Time Series

被引:1
|
作者
Jang, Gye-Bong [1 ]
Cho, Sung-Bae [1 ]
机构
[1] Yonsei Univ, Dept Comp Sci, Seoul, South Korea
关键词
Anomaly detection; deep learning; fault diagnosis; hierarchical prediction; hydraulic equipment; prognostics and health;
D O I
10.1080/01969722.2023.2240651
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection and state prediction research using multivariate data is being actively conducted in various industrial fields. However, since most dynamically operating industrial machines perform different operating conditions, they contain different types of abnormal conditions, making it difficult to detect anomalies and predict the remaining life. This white paper proposes a condition diagnosis model based on multi-sensor data prediction for estimating the remaining lifespan of equipment while solving two complex problems of detecting four typical abnormal conditions and sensor omissions of industrial machines. First, we use a multi-sensor data generation model to learn relationships between sensors, and second, we use a sensor data prediction model to learn sensor-specific feature information. In order to extract the temporal and spatial characteristics of sensing information and to derive the relationship between the sensors, we propose an attention model with three types of cases. Finally, the state of the device is diagnosed through the difference between the model predicted value and the actual value, and future state information of the device is predicted through the accumulation of error information. In order to prove the robustness of the proposed model, extensive experiments were conducted focusing on the case where sensor omission occurred due to data from equipment with more than 4 types and conditions. Our model produces missing sensor data with about 92% accuracy and detects anomalies with about 88% accuracy, even if parts of the sensor are missing or the operating environments have been changed. The proposed model has improved anomaly detection accuracy compared to the comparative model, and has been proven to be applicable to real industrial problems.
引用
收藏
页码:1417 / 1440
页数:24
相关论文
共 50 条
  • [1] A Graph Recurrent Attention Network for Multivariate Time Series Anomaly Detection
    Cui, Tao
    Liu, Yao
    Zhu, Yueming
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 57 - 62
  • [2] Graph Attention Network and Informer for Multivariate Time Series Anomaly Detection
    Zhao, Mengmeng
    Peng, Haipeng
    Li, Lixiang
    Ren, Yeqing
    SENSORS, 2024, 24 (05)
  • [3] Multivariate Time-series Anomaly Detection via Graph Attention Network
    Zhao, Hang
    Wang, Yujing
    Duan, Juanyong
    Huang, Congrui
    Cao, Defu
    Tong, Yunhai
    Xu, Bixiong
    Bai, Jing
    Tong, Jie
    Zhang, Qi
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 841 - 850
  • [4] Learning from Positive and Unlabeled Multi-Instance Bags in Anomaly Detection
    Perini, Lorenzo
    Vercruyssen, Vincent
    Davis, Jesse
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 1897 - 1906
  • [5] Multivariate time series anomaly detection via dynamic graph attention network and Informer
    Huang, Xiangheng
    Chen, Ningjiang
    Deng, Ziyue
    Huang, Suqun
    APPLIED INTELLIGENCE, 2024, 54 (17-18) : 7636 - 7658
  • [6] A graph attention network-based model for anomaly detection in multivariate time series
    Zhang, Wei
    He, Ping
    Qin, Chuntian
    Yang, Fan
    Liu, Ying
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (06): : 8529 - 8549
  • [7] From anomaly detection to classification with graph attention and transformer for multivariate time series
    Wang, Chaoyang
    Liu, Guangyu
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [8] Coupled Attention Networks for Multivariate Time Series Anomaly Detection
    Xia, Feng
    Chen, Xin
    Yu, Shuo
    Hou, Mingliang
    Liu, Mujie
    You, Linlin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2024, 12 (01) : 240 - 253
  • [9] Anomaly Event Detection Basedon Two-Stream Network and Multi-instance Learning
    Yang Xianbin
    Dang Jianwu
    Wang Song
    Wang Yangping
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (20)
  • [10] Multi-Attention Integrated Convolutional Network for Anomaly Detection of Time Series
    Zhang, Jing
    Wang, Chao
    Zhang, Xianbo
    Li, Zezhou
    2022 14TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2022), 2022, : 91 - 96