On Geometry of p-Adic Coherent States and Mutually Unbiased Bases

被引:4
|
作者
Zelenov, Evgeny [1 ]
机构
[1] Steklov Math Inst, Gubkina 8, Moscow 119991, Russia
关键词
p-adic quantum theory; mutually unbiased bases; Hadamard matrix; QUANTUM CRYPTOGRAPHY;
D O I
10.3390/e25060902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper considers coherent states for the representation of Weyl commutation relations over a field of p-adic numbers. A geometric object, a lattice in vector space over a field of p-adic numbers, corresponds to the family of coherent states. It is proven that the bases of coherent states corresponding to different lattices are mutually unbiased, and that the operators defining the quantization of symplectic dynamics are Hadamard operators.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hjelmslev geometry of mutually unbiased bases
    Saniga, M
    Planat, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (02): : 435 - 440
  • [2] Free coherent states and distributions on p-adic numbers
    Kozyrev, SV
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (02) : 349 - 355
  • [3] p-Adic Integral Geometry
    Kulkarni, Avinash
    Lerario, Antonio
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2021, 5 (01) : 28 - 59
  • [4] On geometry of p-adic polynomials
    Zelenov, E., I
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (20-21):
  • [5] A p-Adic Model of Quantum States and the p-Adic Qubit
    Aniello, Paolo
    Mancini, Stefano
    Parisi, Vincenzo
    ENTROPY, 2023, 25 (01)
  • [6] Mutually unbiased bases and generalized Bell states
    Klimov, Andrei B.
    Sych, Denis
    Sanchez-Soto, Luis L.
    Leuchs, Gerd
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [7] p-Adic nonorthogonal wavelet bases
    S. Albeverio
    S. Evdokimov
    M. Skopina
    Proceedings of the Steklov Institute of Mathematics, 2009, 265 : 1 - 12
  • [8] On orthogonal p-adic wavelet bases
    Evdokimov, S.
    Skopina, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (02) : 952 - 965
  • [9] On Biorthogonal p-Adic Wavelet Bases
    King E.J.
    Skopina M.A.
    Journal of Mathematical Sciences, 2018, 234 (2) : 158 - 169
  • [10] p-Adic nonorthogonal wavelet bases
    Albeverio, S.
    Evdokimov, S.
    Skopina, M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 265 (01) : 1 - 12