p-Adic Integral Geometry

被引:3
|
作者
Kulkarni, Avinash [1 ]
Lerario, Antonio [2 ]
机构
[1] Dartmouth Coll, Math, Hanover, NH 03755 USA
[2] SISSA, Math, I-34136 Trieste, Italy
关键词
integral geometry formula; p-adic volume; zeros of random polynomials; THEOREM; ZEROS;
D O I
10.1137/19M1284737
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a p-adic version of the integral geometry formula for averaging the intersection of two p-adic projective varieties. We apply this result to give bounds on the number of points in the modulo pm reduction of a projective variety (reproving a result by Oesterle) and to the study of random p-adic polynomial systems of equations.
引用
收藏
页码:28 / 59
页数:32
相关论文
共 50 条
  • [1] The Ward property for a P-adic basis and the P-adic integral
    Bongiorno, B
    Di Piazza, L
    Skvortsov, VA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (02) : 578 - 592
  • [2] P-ADIC INTEGRAL REPRESENTATION OF P-ADIC L-FUNCTION
    MORITA, Y
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 302 : 71 - 95
  • [3] On geometry of p-adic polynomials
    Zelenov, E., I
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (20-21):
  • [4] Geometry of P-adic numbers.
    Monna, AF
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1942, 45 (6/10): : 981 - 986
  • [5] Integral p-Adic Cohomology Theories
    Abe, Tomoyuki
    Crew, Richard
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (09) : 7331 - 7342
  • [6] ON THE P-ADIC INTEGRAL OF AN EXPONENTIAL POLYNOMIAL
    EVEREST, GR
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 : 334 - 340
  • [7] Integral representation of P-adic functions
    Thu, LTH
    FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS AND APPLICATIONS, 2004, : 169 - 179
  • [8] A COMBINATORIAL APPROACH TO P-ADIC GEOMETRY
    DRESS, AWM
    TERHALLE, W
    GEOMETRIAE DEDICATA, 1993, 46 (02) : 127 - 148
  • [9] CUSPIDAL GEOMETRY OF P-ADIC GROUPS
    KAZHDAN, D
    JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 : 1 - 36
  • [10] Integral p-adic Hodge theory
    Bhatt, Bhargav
    Morrow, Matthew
    Scholze, Peter
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2018, 128 (01): : 219 - 397