On Geometry of p-Adic Coherent States and Mutually Unbiased Bases

被引:4
|
作者
Zelenov, Evgeny [1 ]
机构
[1] Steklov Math Inst, Gubkina 8, Moscow 119991, Russia
关键词
p-adic quantum theory; mutually unbiased bases; Hadamard matrix; QUANTUM CRYPTOGRAPHY;
D O I
10.3390/e25060902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper considers coherent states for the representation of Weyl commutation relations over a field of p-adic numbers. A geometric object, a lattice in vector space over a field of p-adic numbers, corresponds to the family of coherent states. It is proven that the bases of coherent states corresponding to different lattices are mutually unbiased, and that the operators defining the quantization of symplectic dynamics are Hadamard operators.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Mutually unbiased bases
    S Chaturvedi
    Pramana, 2002, 59 : 345 - 350
  • [22] p-adic algorithm for bivariate Grobner bases
    Schost, Eric
    St-Pierre, Catherine
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 508 - 516
  • [23] p-Adic integral operators in wavelet bases
    S. V. Kozyrev
    A. Yu. Khrennikov
    Doklady Mathematics, 2011, 83
  • [24] Mahler bases and elementary p-adic analysis
    De Shalit, Ehud
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2016, 28 (03): : 597 - 620
  • [25] p-Adic integral operators in wavelet bases
    Kozyrev, S. V.
    Khrennikov, A. Yu.
    DOKLADY MATHEMATICS, 2011, 83 (02) : 209 - 212
  • [26] DETERMINATION OF P-ADIC TRANSFORM BASES AND LENGTHS
    PEI, SC
    WU, JL
    ELECTRONICS LETTERS, 1985, 21 (10) : 431 - 432
  • [27] INTEGRATION ON p-ADIC GROUPS AND CRYSTAL BASES
    Bump, Daniel
    Nakasuji, Maki
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (05) : 1595 - 1605
  • [28] Weak bases in P-adic spaces.
    Grande-De Kimpe, ND
    Kakol, J
    Perez-Garcia, C
    Schikhof, WH
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2002, 5B (03): : 667 - 676
  • [29] GEOMETRY OF SECOND ADJOINTNESS FOR p-ADIC GROUPS
    Bezrukavnikov, Roman
    Kazhdan, David
    Varshavsky, Yakov
    REPRESENTATION THEORY, 2015, 19 : 299 - 332
  • [30] ON THE p-ADIC GEOMETRY OF TRACES OF SINGULAR MODULI
    Edixhoven, Bas
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2005, 1 (04) : 495 - 497