A novel hybrid generative adversarial network for CT and MRI super-resolution reconstruction

被引:6
|
作者
Xiao, Yueyue [1 ]
Chen, Chunxiao [1 ]
Wang, Liang [1 ]
Yu, Jie [1 ]
Fu, Xue [1 ]
Zou, Yuan [1 ]
Lin, Zhe [1 ]
Wang, Kunpeng [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Biomed Engn, Nanjing, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2023年 / 68卷 / 13期
基金
中国国家自然科学基金;
关键词
super-resolution reconstruction; frequency-domain network; image-domain network; CT; MRI; IMAGE; TRANSFORM;
D O I
10.1088/1361-6560/acdc7e
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Computed tomography (CT) and magnetic resonance imaging (MRI) are widely used in medical imaging modalities, and provide valuable information for clinical diagnosis and treatment. However, due to hardware limitations and radiation safety concerns, the acquired images are often limited in resolution. Super-resolution reconstruction (SR) techniques have been developed to enhance the resolution of CT and MRI slices, which can potentially improve diagnostic accuracy. To capture more useful feature information and reconstruct higher quality super-resolution images, we proposed a novel hybrid framework SR model based on generative adversarial networks. Approach. The proposed SR model combines frequency domain and perceptual loss functions, which can work in both frequency domain and image domain (spatial domain). The proposed SR model consists of 4 parts: (i) the discrete Fourier transform (DFT) operation transforms the image from the image domain to frequency domain; (ii) a complex residual U-net performs SR in the frequency domain; (iii) the inverse discrete Fourier transform (iDFT) operation based on data fusion transforms the image from the frequency domain to image domain; (iv) an enhanced residual U-net network is used for SR of image domain. Main results. Experimental results on bladder MRI slices, abdomen CT slices, and brain MRI slices show that the proposed SR model outperforms state-of-the-art SR methods in terms of visual quality and objective quality metric such as the structural similarity (SSIM) and the peak signal-to-noise ratio (PSNR), which proves that the proposed model has better generalization and robustness. (Bladder dataset: upscaling factor of 2: SSIM = 0.913, PSNR = 31.203; upscaling factor of 4: SSIM = 0.821, PSNR = 28.604. Abdomen dataset: upscaling factor of 2: SSIM = 0.929, PSNR = 32.594; upscaling factor of 4: SSIM = 0.834, PSNR = 27.050. Brain dataset: SSIM = 0.861, PSNR = 26.945). Significance. Our proposed SR model is capable of SR for CT and MRI slices. The SR results provide a reliable and effective foundation for clinical diagnosis and treatment.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Super-resolution PET imaging using a generative adversarial network
    Song, Tzu-An
    Chowdhury, Samadrita Roy
    El Fakhri, Georges
    Li, Quanzheng
    Dutta, Joyita
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [42] Recovering Super-Resolution Generative Adversarial Network for Underwater Images
    Chen, Yang
    Sun, Jinxuan
    Jiao, Wencong
    Zhong, Guoqiang
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV, 2019, 1142 : 75 - 83
  • [43] Improved generative adversarial network for retinal image super-resolution
    Qiu, Defu
    Cheng, Yuhu
    Wang, Xuesong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 225
  • [44] Lightweight Super-Resolution Generative Adversarial Network for SAR Images
    Jiang, Nana
    Zhao, Wenbo
    Wang, Hui
    Luo, Huiqi
    Chen, Zezhou
    Zhu, Jubo
    REMOTE SENSING, 2024, 16 (10)
  • [45] Mars Image Super-Resolution Based on Generative Adversarial Network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    IEEE ACCESS, 2021, 9 : 108889 - 108898
  • [46] Spatial Transformer Generative Adversarial Network for Image Super-Resolution
    Rempakos, Pantelis
    Vrigkas, Michalis
    Plissiti, Marina E.
    Nikou, Christophoros
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 399 - 411
  • [47] A lightweight generative adversarial network for single image super-resolution
    Lu, Xinbiao
    Xie, Xupeng
    Ye, Chunlin
    Xing, Hao
    Liu, Zecheng
    Cai, Changchun
    VISUAL COMPUTER, 2024, 40 (01): : 41 - 52
  • [48] Image super-resolution using conditional generative adversarial network
    Qiao, Jiaojiao
    Song, Huihui
    Zhang, Kaihua
    Zhang, Xiaolu
    Liu, Qingshan
    IET IMAGE PROCESSING, 2019, 13 (14) : 2673 - 2679
  • [49] MULTIRESOLUTION MIXTURE GENERATIVE ADVERSARIAL NETWORK FOR IMAGE SUPER-RESOLUTION
    Wang, Yudiao
    Lan, Xuguang
    Zhang, Yinshu
    Miao, Ruixue
    Tian, Zhiqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [50] Image Super-Resolution using a Improved Generative Adversarial Network
    Wang, Han
    Wu, Wei
    Su, Yang
    Duan, Yongsheng
    Wang, Pengze
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 312 - 315