Spatial Transformer Generative Adversarial Network for Image Super-Resolution

被引:1
|
作者
Rempakos, Pantelis [1 ]
Vrigkas, Michalis [2 ]
Plissiti, Marina E. [1 ]
Nikou, Christophoros [1 ]
机构
[1] Univ Ioannina, Dept Comp Sci & Engn, Ioannina 45110, Greece
[2] Univ Western Macedonia, Dept Commun & Digital Media, Kastoria 52100, Greece
关键词
Image super-resolution; Spatial transformer; VGG; SRGAN;
D O I
10.1007/978-3-031-43148-7_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-resolution images play an essential role in the performance of image analysis and pattern recognition methods. However, the expensive setup required to generate them and the inherent limitations of the sensors in optics manufacturing technology leads to the restricted availability of these images. In this work, we exploit the information retrieved in feature maps using the notable VGG networks and apply a transformer network to address spatial rigid affine transformation invariances, such as translation, scaling, and rotation. To evaluate and compare the performance of the model, three publicly available datasets were used. The model achieved very gratifying and accurate performance in terms of image PSNR and SSIM metrics against the baseline method.
引用
收藏
页码:399 / 411
页数:13
相关论文
共 50 条
  • [1] Spatial Transformer Generative Adversarial Network for Robust Image Super-Resolution
    Kasem, Hossam M.
    Hung, Kwok-Wai
    Jiang, Jianmin
    IEEE ACCESS, 2019, 7 : 182993 - 183009
  • [2] An Iris Image Super-Resolution Model Based on Swin Transformer and Generative Adversarial Network
    Lu, Hexin
    Zhu, Xiaodong
    Cui, Jingwei
    Jiang, Haifeng
    ALGORITHMS, 2024, 17 (03)
  • [3] Generative adversarial networks for hyperspectral image spatial super-resolution
    Jiang Yilin
    Shao Ran
    Tang Sanqiang
    TheJournalofChinaUniversitiesofPostsandTelecommunications, 2020, 27 (04) : 8 - 16
  • [4] Image Super-Resolution Reconstruction Based on a Generative Adversarial Network
    Wu, Yun
    Lan, Lin
    Long, Huiyun
    Kong, Guangqian
    Duan, Xun
    Xu, Changzhuan
    IEEE ACCESS, 2020, 8 : 215133 - 215144
  • [5] Image super-resolution based on conditional generative adversarial network
    Gao, Hongxia
    Chen, Zhanhong
    Huang, Binyang
    Chen, Jiahe
    Li, Zhifu
    IET IMAGE PROCESSING, 2020, 14 (13) : 3006 - 3013
  • [6] Mars image super-resolution based on generative adversarial network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    Zhang, Yongqiang (yongqiang.zhang.hit@gmail.com); Ding, Mingli (mingli.ding.hit@gmail.com), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 108889 - 108898
  • [7] Image Super-resolution Reconstructing based on Generative Adversarial Network
    Nan Jing
    Bo Lei
    AI IN OPTICS AND PHOTONICS (AOPC 2019), 2019, 11342
  • [8] Improved generative adversarial network for retinal image super-resolution
    Qiu, Defu
    Cheng, Yuhu
    Wang, Xuesong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 225
  • [9] Mars Image Super-Resolution Based on Generative Adversarial Network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    IEEE ACCESS, 2021, 9 : 108889 - 108898
  • [10] A lightweight generative adversarial network for single image super-resolution
    Lu, Xinbiao
    Xie, Xupeng
    Ye, Chunlin
    Xing, Hao
    Liu, Zecheng
    Cai, Changchun
    VISUAL COMPUTER, 2024, 40 (01): : 41 - 52