Spatial Transformer Generative Adversarial Network for Image Super-Resolution

被引:1
|
作者
Rempakos, Pantelis [1 ]
Vrigkas, Michalis [2 ]
Plissiti, Marina E. [1 ]
Nikou, Christophoros [1 ]
机构
[1] Univ Ioannina, Dept Comp Sci & Engn, Ioannina 45110, Greece
[2] Univ Western Macedonia, Dept Commun & Digital Media, Kastoria 52100, Greece
关键词
Image super-resolution; Spatial transformer; VGG; SRGAN;
D O I
10.1007/978-3-031-43148-7_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-resolution images play an essential role in the performance of image analysis and pattern recognition methods. However, the expensive setup required to generate them and the inherent limitations of the sensors in optics manufacturing technology leads to the restricted availability of these images. In this work, we exploit the information retrieved in feature maps using the notable VGG networks and apply a transformer network to address spatial rigid affine transformation invariances, such as translation, scaling, and rotation. To evaluate and compare the performance of the model, three publicly available datasets were used. The model achieved very gratifying and accurate performance in terms of image PSNR and SSIM metrics against the baseline method.
引用
收藏
页码:399 / 411
页数:13
相关论文
共 50 条
  • [21] Generative adversarial network in wavelet domain for single image super-resolution
    Zhang, Fan
    Wang, Xinwei
    Cao, Lin
    Du, Kangning
    Guo, Yanan
    Journal of Computers (Taiwan), 2021, 32 (03) : 249 - 262
  • [22] Terahertz image super-resolution restoration using a hybrid-Transformer-based generative adversarial network
    Wu, Heng
    Zheng, Jing
    He, Chunhua
    Xiao, Huapan
    Luo, Shaojuan
    OPTICS AND LASERS IN ENGINEERING, 2025, 189
  • [23] CSRGAN: MEDICAL IMAGE SUPER-RESOLUTION USING A GENERATIVE ADVERSARIAL NETWORK
    Zhu, Yongpei
    Zhou, Zicong
    Liao, Guojun
    Yuan, Kehong
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING WORKSHOPS (IEEE ISBI WORKSHOPS 2020), 2020,
  • [24] Generative Adversarial Network for Image Super-Resolution Combining Texture Loss
    Jiang, Yuning
    Li, Jinhua
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [25] Dual Discriminator Generative Adversarial Network for Single Image Super-Resolution
    Liu, Peng
    Hong, Ying
    Liu, Yan
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 680 - 687
  • [26] Super-resolution SAR Image Reconstruction via Generative Adversarial Network
    Wang, Longgang
    Zheng, Mana
    Du, Wenbo
    Wei, Menglin
    Li, Lianlin
    2018 12TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND ELECTROMAGNETIC THEORY (ISAPE), 2018,
  • [27] Multi-scale generative adversarial network for image super-resolution
    Jiang Daihong
    Zhang Sai
    Dai Lei
    Dai Yueming
    Soft Computing, 2022, 26 : 3631 - 3641
  • [28] Enhanced image super-resolution using hierarchical generative adversarial network
    Zhao, Jianwei
    Fang, Chenyun
    Zhou, Zhenghua
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2022, 15 (03) : 243 - 257
  • [29] Super-Resolution of Text Image Based on Conditional Generative Adversarial Network
    Wang, Yuyang
    Ding, Wenjun
    Su, Feng
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT III, 2018, 11166 : 270 - 281
  • [30] SWCGAN: Generative Adversarial Network Combining Swin Transformer and CNN for Remote Sensing Image Super-Resolution
    Tu, Jingzhi
    Mei, Gang
    Ma, Zhengjing
    Piccialli, Francesco
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5662 - 5673