On a New Norm on the Space of Reproducing Kernel Hilbert Space Operators and Berezin Radius Inequalities

被引:13
|
作者
Bhunia, P. [1 ]
Gurdal, M. [2 ]
Paul, K. [3 ]
Sen, A. [3 ]
Tapdigoglu, R. [4 ,5 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru, Karnataka, India
[2] Suleyman Demirel Univ, Dept Math, Isparta, Turkiye
[3] Jadavpur Univ, Dept Math, Kolkata, West Bengal, India
[4] Azerbaijan State Univ Econ UNEC, Baku, Azerbaijan
[5] Khazar Univ, Dept Math, Baku, Azerbaijan
关键词
Berezin norm; Berezin radius; bounded linear operator; reproducing kernel Hilbert space; NUMERICAL RADIUS; UPPER-BOUNDS; NUMBER; SYMBOLS;
D O I
10.1080/01630563.2023.2221857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide a new norm(a-Berezin norm) on the space of all bounded linear operators defined on a reproducing kernel Hilbert space, which generalizes the Berezin radius and the Berezin norm. We study the basic properties of the a-Berezin norm and develop various inequalities involving the a-Berezin norm. By using the inequalities we obtain various bounds for the Berezin radius of bounded linear operators, which improve on the earlier bounds. Further, we obtain a Berezin radius inequality for the sum of the product of operators, from which we derive new Berezin radius bounds.
引用
收藏
页码:970 / 986
页数:17
相关论文
共 50 条
  • [41] Numerical Radius Inequalities for Commutators of Hilbert Space Operators
    Hirzallah, Omar
    Kittaneh, Fuad
    Shebrawi, Khalid
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) : 739 - 749
  • [42] SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR HILBERT SPACE OPERATORS
    Hosseini, Mohsen Shah
    Omidvar, Mohsen Erfanian
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (03) : 489 - 496
  • [43] Some Inequalities for the Numerical Radius of Hilbert Space Operators
    Gao, Fugen
    Hu, Yijuan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)
  • [44] Furtherance of numerical radius inequalities of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    ARCHIV DER MATHEMATIK, 2021, 117 (05) : 537 - 546
  • [45] Unbounded Hermitian operators and relative reproducing kernel Hilbert space
    Jorgensen, Palle E. T.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (03): : 569 - 596
  • [46] Approximating Reproducing Kernel Hilbert Space Functions by Bernstein Operators
    Feng, Han
    Hui, Sonia Y. W.
    Shen, Ruohan
    RESULTS IN MATHEMATICS, 2024, 79 (06)
  • [47] SOME NEW NUMERICAL RADIUS AND HILBERT-SCHMIDT NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Yang, Chaojun
    Xu, Minghua
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (01): : 269 - 282
  • [48] Berezin number and numerical radius inequalities for operators on Hilbert spaces
    Satyajit Sahoo
    Namita Das
    Debasisha Mishra
    Advances in Operator Theory, 2020, 5 : 714 - 727
  • [49] Some New Refinements of Generalized Numerical Radius Inequalities for Hilbert Space Operators
    Kais Feki
    Fuad Kittaneh
    Mediterranean Journal of Mathematics, 2022, 19
  • [50] A New Application Of Reproducing Kernel Hilbert Space Method
    Akgul, A.
    Sakar, M. Giyas
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978