On a New Norm on the Space of Reproducing Kernel Hilbert Space Operators and Berezin Radius Inequalities

被引:13
|
作者
Bhunia, P. [1 ]
Gurdal, M. [2 ]
Paul, K. [3 ]
Sen, A. [3 ]
Tapdigoglu, R. [4 ,5 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru, Karnataka, India
[2] Suleyman Demirel Univ, Dept Math, Isparta, Turkiye
[3] Jadavpur Univ, Dept Math, Kolkata, West Bengal, India
[4] Azerbaijan State Univ Econ UNEC, Baku, Azerbaijan
[5] Khazar Univ, Dept Math, Baku, Azerbaijan
关键词
Berezin norm; Berezin radius; bounded linear operator; reproducing kernel Hilbert space; NUMERICAL RADIUS; UPPER-BOUNDS; NUMBER; SYMBOLS;
D O I
10.1080/01630563.2023.2221857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide a new norm(a-Berezin norm) on the space of all bounded linear operators defined on a reproducing kernel Hilbert space, which generalizes the Berezin radius and the Berezin norm. We study the basic properties of the a-Berezin norm and develop various inequalities involving the a-Berezin norm. By using the inequalities we obtain various bounds for the Berezin radius of bounded linear operators, which improve on the earlier bounds. Further, we obtain a Berezin radius inequality for the sum of the product of operators, from which we derive new Berezin radius bounds.
引用
收藏
页码:970 / 986
页数:17
相关论文
共 50 条
  • [31] New Inequalities for Davis-Wielandt Radius of Hilbert Space Operators
    Bhunia, Pintu
    Bhanja, Aniket
    Paul, Kallol
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3523 - 3539
  • [32] New estimates for the Berezin number of Hilbert space operators
    Zolfaghari, Parvaneh
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (06) : 1081 - 1088
  • [33] Some norm inequalities for accretive Hilbert space operators
    Moosavi, Baharak
    Hosseini, Mohsen Shah
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (02): : 327 - 340
  • [34] Norm inequalities for the absolute value of Hilbert space operators
    Shebrawi, Khalid
    Albadawi, Hussien
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (04): : 453 - 463
  • [35] Numerical Radius Inequalities for Products of Hilbert Space Operators
    Hosseini, M. Shah
    Moosavi, B.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (12)
  • [36] NUMERICAL RADIUS INEQUALITIES FOR PRODUCTS OF HILBERT SPACE OPERATORS
    Abu-Omar, Amer
    Kittaneh, Fuad
    JOURNAL OF OPERATOR THEORY, 2014, 72 (02) : 521 - 527
  • [37] ON SOME NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Ghasvareh, Mahdi
    Omidvar, Mohsen Erfanian
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (02): : 192 - 197
  • [38] REFINING NUMERICAL RADIUS INEQUALITIES OF HILBERT SPACE OPERATORS
    Khorasani, Mohammad Ali Shiran
    Heydarbeygi, Zahra
    MATEMATICKI VESNIK, 2023, 75 (01): : 50 - 57
  • [39] Furtherance of numerical radius inequalities of Hilbert space operators
    Pintu Bhunia
    Kallol Paul
    Archiv der Mathematik, 2021, 117 : 537 - 546
  • [40] FURTHER INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS
    Tafazoli, Sara
    Moradi, Hamid Reza
    Furuichi, Shigeru
    Harikrishnan, Panackal
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 955 - 967