Overview of interpretive modelling of fusion performance in JET DTE2 discharges with TRANSP

被引:12
|
作者
Stancar, Z. [1 ]
Kirov, K. K. [1 ]
Auriemma, F. [2 ,13 ]
Kim, H. -t. [1 ]
Poradzinski, M. [1 ]
Sharma, R. [1 ]
Lorenzini, R. [2 ]
Ghani, Z. [1 ]
Gorelenkova, M. [3 ]
Poli, F. [3 ]
Boboc, A. [1 ]
Brezinsek, S. [4 ]
Carvalho, P. [1 ]
Casson, F. J. [1 ]
Challis, C. D. [1 ]
Delabie, E. [5 ]
Van Eester, D. [6 ]
Fitzgerald, M. [1 ]
Fontdecaba, J. M. [7 ]
Gallart, D. [8 ]
Garcia, J. [9 ]
Garzotti, L. [1 ]
Giroud, C. [1 ]
Kappatou, A. [10 ]
Kazakov, Ye. O. [6 ]
King, D. B. [1 ]
Kiptily, V. G. [1 ]
Kos, D. [1 ]
Lerche, E. [1 ,6 ]
Litherland-Smith, E. [1 ]
Maggi, C. F. [1 ]
Mantica, P. [11 ]
Mantsinen, M. J. [8 ,14 ]
Maslov, M. [1 ]
Menmuir, S. [1 ]
Nocente, M. [12 ]
Oliver, H. J. C. [1 ]
Sharapov, S. E. [1 ]
Siren, P. [1 ]
Solano, E. R. [7 ]
Sun, H. J. [1 ]
Szepesi, G. [1 ]
机构
[1] United Kingdom Atom Energy Author, Culham Sci Ctr, Abingdon, Oxon, England
[2] Univ Padua, CNR, ENEA, Consorzio RFX,INFN,Acciaierie Venete SpA, I-35127 Padua, Italy
[3] Princeton Plasma Phys Lab, Princeton, NJ USA
[4] Forschungszentrum Julich, Insitut Energie & Klimaforschung Plasmasphys, Julich, Germany
[5] Oak Ridge Natl Lab, Oak Ridge, TN USA
[6] Ecole Royale Mil, Lab Plasma Phys, Brussels, Belgium
[7] CIEMAT, Lab Nacl Fus, Madrid, Spain
[8] Barcelona Supercomp Ctr, Barcelona, Spain
[9] CEA, IRFM, St Paul Les Durance, France
[10] Max Planck Inst Plasma Phys, Garching, Germany
[11] CNR, Inst Plasma Sci & Technol, Milan, Italy
[12] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Milan, Italy
[13] CNR, Ist Sci & Tecnol Plasmi, Padua, Italy
[14] ICREA, Barcelona, Spain
关键词
deuterium-tritium plasma; integrated modelling; fusion performance; JET; TRANSP; NEUTRON; SPECTRA;
D O I
10.1088/1741-4326/ad0310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the paper we present an overview of interpretive modelling of a database of JET-ILW 2021 D-T discharges using the TRANSP code. The main aim is to assess our capability of computationally reproducing the fusion performance of various D-T plasma scenarios using different external heating and D-T mixtures, and to understand the performance driving mechanisms. We find that interpretive simulations confirm a general power-law relationship between increasing external heating power and fusion output, which is supported by absolutely calibrated neutron yield measurements. A comparison of measured and computed D-T neutron rates shows that the calculations' discrepancy depends on the absolute neutron yield. The calculations are found to agree well with measurements for higher performing discharges with external heating power above similar to 20 MW , while low-neutron shots display an average discrepancy of around +40% compared to measured neutron yields. A similar trend is found for the ratio between thermal and beam-target fusion, where larger discrepancies are seen in shots with dominant beam-driven performance. We compare the observations to studies of JET-ILW D discharges, to find that on average the fusion performance is well modelled over a range of heating power, although an increased unsystematic deviation for lower-performing shots is observed. The ratio between thermal and beam-induced D-T fusion is found to be increasing weakly with growing external heating power, with a maximum value of greater than or similar to 1 achieved in a baseline scenario experiment. An evaluation of the fusion power computational uncertainty shows a strong dependence on the plasma scenario type and fusion drive characteristics, varying between +/- 25% and 35%. D-T fusion alpha simulations show that the ratio between volume-integrated electron and ion heating from alphas is less than or similar to 10 for the majority of analysed discharges. Alphas are computed to contribute between similar to 15% and 40% to the total electron heating in the core of highest performing D-T discharges. An alternative workflow to TRANSP was employed to model JET D-T plasmas with the highest fusion yield and dominant non-thermal fusion component because of the use of fundamental radio-frequency heating of a large minority in the scenario, which is calculated to have provided similar to 10% to the total fusion power.
引用
收藏
页数:29
相关论文
共 22 条
  • [1] Modelling performed for predictions of fusion power in JET DTE2: overview and lessons learnt
    Garcia, J.
    Casson, F. J.
    Frassinetti, L.
    Gallart, D.
    Garzotti, L.
    Kim, H. -t.
    Nocente, M.
    Saarelma, S.
    Auriemma, F.
    Ferreira, J.
    Gabriellini, S.
    Ho, A.
    Huynh, P.
    Kirov, K. K.
    Lerche, E.
    Mantsinen, M. J.
    Zotta, V. K.
    Stancar, Z.
    Taylor, D. M. A.
    Van Eester, D.
    Challis, C. D.
    NUCLEAR FUSION, 2023, 63 (11)
  • [2] Impact of interaction between RF waves and fast NBI ions on the fusion performance in JET DTE2 campaign
    Kirov, K. K.
    Challis, C. D.
    De la Luna, E.
    Eriksson, J.
    Gallart, D.
    Garcia, J.
    Gorelenkova, M.
    Hobirk, J.
    Jacquet, P.
    Kappatou, A.
    Kazakov, Y. O.
    Keeling, D.
    King, D.
    Lerche, E.
    Maggi, C.
    Mailloux, J.
    Mantica, P.
    Mantsinen, M.
    Maslov, M.
    Menmuir, S.
    Siren, P.
    Stancar, Z.
    Van Eester, D.
    NUCLEAR FUSION, 2024, 64 (01)
  • [3] ICRH operations during the JET tritium and DTE2 campaigns
    Jacquet, P.
    Dumortier, P.
    Lerche, E.
    Monakhov, I.
    Noble, C.
    Roberts, J.
    Sheikh, H.
    Goodyear, A.
    Balshaw, N.
    Ciric, D.
    Lobel, R.
    Lomas, P.
    Lowry, C.
    Rimini, F.
    Silburn, S.
    Horton, L.
    NUCLEAR FUSION, 2024, 64 (06)
  • [4] Shutdown dose rate experiment at JET during DTE2
    Fonnesu, N.
    Loreti, S.
    Villari, R.
    Flammini, D.
    Mariano, G.
    Batistoni, P.
    Colangeli, A.
    Moro, F.
    Previti, A.
    Klix, A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (05):
  • [5] Prediction of transport in the JET DTE2 discharges with TGLF and NEO models using the TGYRO transport code
    Shi, N.
    Staebler, G. M.
    Belli, E. A.
    McClenaghan, J.
    Kim, H-t.
    Auriemma, F.
    Kirov, K.
    Frigione, D.
    Garzotti, L.
    Zotta, V. K.
    Rimini, F.
    Van Eester, D.
    Lomas, P.
    NUCLEAR FUSION, 2024, 64 (07)
  • [6] ICRH options for JET-ILW DTE2 operation
    Lerche, E.
    Van Eester, D.
    Jacquet, P.
    Casson, F.
    Baranov, Y.
    Dumortier, P.
    Gallart, D.
    Graves, J.
    Huynh, P.
    Johnson, T.
    Kayakov, Y.
    Kiptily, V
    Kirov, K.
    Machielsen, M.
    Mantsinen, M.
    Monakhov, I
    Ongena, J.
    23RD TOPICAL CONFERENCE ON RADIOFREQUENCY POWER IN PLASMAS, 2020, 2254
  • [7] Shutdown dose rate studies for the DTE2 campaign at JET
    Fonnesu, N.
    Villari, R.
    Flammini, D.
    Batistoni, P.
    Fischer, U.
    Pereslavtsev, P.
    FUSION ENGINEERING AND DESIGN, 2020, 161
  • [8] Advanced design of the Mechanical Tritium Pumping System for JET DTE2
    Giegerich, T.
    Bekris, N.
    Camp, P.
    Day, Chr.
    Gethins, M.
    Lesnoy, S.
    Luo, X.
    Mueller, R.
    Ochoa, S.
    Pfeil, P.
    Smith, R.
    Strobel, H.
    Stump, H.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    FUSION ENGINEERING AND DESIGN, 2016, 109 : 359 - 364
  • [9] CONCEPTUAL DESIGN OF THE MECHANICAL TRITIUM PUMPING SYSTEM FOR JET DTE2
    Giegerich, Thomas
    Bekris, Nicolas
    Butler, Barry
    Day, Christian
    Gethins, Michael
    Lesnoj, Sergej
    Luo, Xueli
    Mueller, Ralf
    Ochoa, Santiago
    Pfeil, Peter
    Smith, Robert
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    FUSION SCIENCE AND TECHNOLOGY, 2015, 68 (03) : 630 - 634
  • [10] Extending helium partial pressure measurement technology to JET DTE2 and ITER
    Klepper, C. C.
    Biewer, T. M.
    Kruezi, U.
    Vartanian, S.
    Douai, D.
    Hillis, D. L.
    Marcus, C.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    Avotina, L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11):