Prediction of transport in the JET DTE2 discharges with TGLF and NEO models using the TGYRO transport code

被引:2
|
作者
Shi, N. [1 ]
Staebler, G. M. [2 ]
Belli, E. A. [1 ]
McClenaghan, J. [1 ]
Kim, H-t. [3 ]
Auriemma, F. [4 ]
Kirov, K. [3 ]
Frigione, D. [5 ]
Garzotti, L. [3 ]
Zotta, V. K. [6 ]
Rimini, F. [3 ]
Van Eester, D. [7 ]
Lomas, P. [3 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN USA
[3] United Kingdom Atom Energy Author, Abingdon, Ireland
[4] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[5] Assoc EURATOM ENEA Fus, CP 65, Rome, Italy
[6] Sapienza Univ Rome, Dept Astronaut Elect & Energy Engn, Via Eudossiana 18, I-00184 Rome, Italy
[7] Assoc EUROFUS Belgian State, LPP ERM, KMS, TEC partner, Brussels, Belgium
基金
英国工程与自然科学研究理事会;
关键词
JET DTE2; TGLF-SAT2; D-T plasma transport modeling; TGYRO-STEP integrated modeling;
D O I
10.1088/1741-4326/ad53e3
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The JET Deuterium-Tritium-Experiment Campaign 2 (DTE2) has demonstrated the highest-ever fusion energy production. To forecast the transport dynamics within these discharges, the TGLF and NEO models within the TGYRO transport code were employed. A critical development in this study is the new quasilinear transport model, TGLF-SAT2, specifically designed to resolve discrepancies identified in JET deuterium discharges. This model accurately describes the saturated three-dimensional (3D) fluctuation spectrum, aligning closely with a database of nonlinear CGYRO turbulence simulations, thereby enhancing the predictive accuracy of TGYRO simulations. In validating against the JET DTE2 discharges across two primary operating scenarios, TGYRO effectively predicted the temperature profiles within a broad radial window (rho similar to 0.2-0.85), though with minor ion temperature discrepancies near the core. However, a consistent underprediction of electron density profiles by 20% across the simulation domain was noted, indicating areas for future refinement. To achieve a self-consistent steady-state solution based on the JET DTE2 discharges, an integrated modeling workflow TGYRO-STEP within the OMFIT framework was introduced. This workflow iterates among the core transport, the pedestal pressure and the MHD equilibrium, ultimately yielding a converged solution that significantly reduces dependence on experimental boundary conditions for temperature and density profiles. The integrated simulation results show negligible differences in electron density and temperature profiles compared to standalone TGYRO modeling, while the ion temperature profile is lower due to the updated boundary condition in TGYRO-STEP. The application of the TGYRO-STEP workflow to JET DTE2 discharges serves as a crucial test to validate its robustness and highlights its limitations, providing valuable insights for its potential future application in ITER and Fusion Power Plant deuterium and tritium prediction modeling.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] European transport simulator modeling of JET-ILW baseline plasmas: predictive code validation and DTE2 predictions
    Huynh, P.
    Lerche, E. A.
    Van Eester, D.
    Garcia, J.
    Johnson, T.
    Ferreira, J.
    Kirov, K. K.
    Yadykin, D.
    Strand, P.
    NUCLEAR FUSION, 2021, 61 (09)
  • [2] Overview of interpretive modelling of fusion performance in JET DTE2 discharges with TRANSP
    Stancar, Z.
    Kirov, K. K.
    Auriemma, F.
    Kim, H. -t.
    Poradzinski, M.
    Sharma, R.
    Lorenzini, R.
    Ghani, Z.
    Gorelenkova, M.
    Poli, F.
    Boboc, A.
    Brezinsek, S.
    Carvalho, P.
    Casson, F. J.
    Challis, C. D.
    Delabie, E.
    Van Eester, D.
    Fitzgerald, M.
    Fontdecaba, J. M.
    Gallart, D.
    Garcia, J.
    Garzotti, L.
    Giroud, C.
    Kappatou, A.
    Kazakov, Ye. O.
    King, D. B.
    Kiptily, V. G.
    Kos, D.
    Lerche, E.
    Litherland-Smith, E.
    Maggi, C. F.
    Mantica, P.
    Mantsinen, M. J.
    Maslov, M.
    Menmuir, S.
    Nocente, M.
    Oliver, H. J. C.
    Sharapov, S. E.
    Siren, P.
    Solano, E. R.
    Sun, H. J.
    Szepesi, G.
    NUCLEAR FUSION, 2023, 63 (12)
  • [3] Energy transport analysis of NSTX plasmas with the TGLF turbulent and NEO neoclassical transport models
    Avdeeva, G.
    Thome, K. E.
    Smith, S. P.
    Battaglia, D. J.
    Clauser, C. F.
    Guttenfelder, W.
    Kaye, S. M.
    Mcclenaghan, J.
    Meneghini, O.
    Odstrcil, T.
    Staebler, G.
    NUCLEAR FUSION, 2023, 63 (12)
  • [4] Investigation of energy transport in DIII-D High-βP EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models
    Pan, C.
    Staebler, G. M.
    Lao, L. L.
    Garofalo, A. M.
    Gong, X.
    Ren, Q.
    McClenaghan, J.
    Li, G.
    Ding, S.
    Qian, J.
    Wan, B.
    Xu, G. S.
    Solomon, W.
    Meneghini, O.
    Smith, S. P.
    NUCLEAR FUSION, 2017, 57 (03)
  • [5] Stress Tests of Transport Models Using FACETS Code
    Pankin, A. Y.
    Callen, J. D.
    Cary, J. R.
    Groebner, R. J.
    Hakim, A.
    Kruger, S. E.
    Pletzer, A.
    Shasharina, S.
    Vadlamani, S.
    Cohen, R. H.
    Kritz, A. H.
    Rognlien, T. D.
    Rafiq, T.
    IFP-CNR-CHALMERS WORKSHOP ON NONLINEAR PHENOMENA IN FUSION PLASMAS, 2011, 1392
  • [6] Estimation of total discharges of volcanic ash using atmospheric-transport models
    Moiseenko, K. B.
    Malik, N. A.
    JOURNAL OF VOLCANOLOGY AND SEISMOLOGY, 2015, 9 (01) : 30 - 47
  • [7] Estimation of total discharges of volcanic ash using atmospheric-transport models
    K. B. Moiseenko
    N. A. Malik
    Journal of Volcanology and Seismology, 2015, 9 : 30 - 47
  • [8] Prediction of temperature profiles in helical plasmas by integrated code coupled with gyrokinetic transport models
    Toda, S.
    Nunami, M.
    Sugama, H.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2022, 64 (08)
  • [9] Solar cycle prediction using precursors and flux transport models
    Cameron, R.
    Schuessler, M.
    ASTROPHYSICAL JOURNAL, 2007, 659 (01): : 801 - 811