Overview of interpretive modelling of fusion performance in JET DTE2 discharges with TRANSP

被引:12
|
作者
Stancar, Z. [1 ]
Kirov, K. K. [1 ]
Auriemma, F. [2 ,13 ]
Kim, H. -t. [1 ]
Poradzinski, M. [1 ]
Sharma, R. [1 ]
Lorenzini, R. [2 ]
Ghani, Z. [1 ]
Gorelenkova, M. [3 ]
Poli, F. [3 ]
Boboc, A. [1 ]
Brezinsek, S. [4 ]
Carvalho, P. [1 ]
Casson, F. J. [1 ]
Challis, C. D. [1 ]
Delabie, E. [5 ]
Van Eester, D. [6 ]
Fitzgerald, M. [1 ]
Fontdecaba, J. M. [7 ]
Gallart, D. [8 ]
Garcia, J. [9 ]
Garzotti, L. [1 ]
Giroud, C. [1 ]
Kappatou, A. [10 ]
Kazakov, Ye. O. [6 ]
King, D. B. [1 ]
Kiptily, V. G. [1 ]
Kos, D. [1 ]
Lerche, E. [1 ,6 ]
Litherland-Smith, E. [1 ]
Maggi, C. F. [1 ]
Mantica, P. [11 ]
Mantsinen, M. J. [8 ,14 ]
Maslov, M. [1 ]
Menmuir, S. [1 ]
Nocente, M. [12 ]
Oliver, H. J. C. [1 ]
Sharapov, S. E. [1 ]
Siren, P. [1 ]
Solano, E. R. [7 ]
Sun, H. J. [1 ]
Szepesi, G. [1 ]
机构
[1] United Kingdom Atom Energy Author, Culham Sci Ctr, Abingdon, Oxon, England
[2] Univ Padua, CNR, ENEA, Consorzio RFX,INFN,Acciaierie Venete SpA, I-35127 Padua, Italy
[3] Princeton Plasma Phys Lab, Princeton, NJ USA
[4] Forschungszentrum Julich, Insitut Energie & Klimaforschung Plasmasphys, Julich, Germany
[5] Oak Ridge Natl Lab, Oak Ridge, TN USA
[6] Ecole Royale Mil, Lab Plasma Phys, Brussels, Belgium
[7] CIEMAT, Lab Nacl Fus, Madrid, Spain
[8] Barcelona Supercomp Ctr, Barcelona, Spain
[9] CEA, IRFM, St Paul Les Durance, France
[10] Max Planck Inst Plasma Phys, Garching, Germany
[11] CNR, Inst Plasma Sci & Technol, Milan, Italy
[12] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Milan, Italy
[13] CNR, Ist Sci & Tecnol Plasmi, Padua, Italy
[14] ICREA, Barcelona, Spain
关键词
deuterium-tritium plasma; integrated modelling; fusion performance; JET; TRANSP; NEUTRON; SPECTRA;
D O I
10.1088/1741-4326/ad0310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the paper we present an overview of interpretive modelling of a database of JET-ILW 2021 D-T discharges using the TRANSP code. The main aim is to assess our capability of computationally reproducing the fusion performance of various D-T plasma scenarios using different external heating and D-T mixtures, and to understand the performance driving mechanisms. We find that interpretive simulations confirm a general power-law relationship between increasing external heating power and fusion output, which is supported by absolutely calibrated neutron yield measurements. A comparison of measured and computed D-T neutron rates shows that the calculations' discrepancy depends on the absolute neutron yield. The calculations are found to agree well with measurements for higher performing discharges with external heating power above similar to 20 MW , while low-neutron shots display an average discrepancy of around +40% compared to measured neutron yields. A similar trend is found for the ratio between thermal and beam-target fusion, where larger discrepancies are seen in shots with dominant beam-driven performance. We compare the observations to studies of JET-ILW D discharges, to find that on average the fusion performance is well modelled over a range of heating power, although an increased unsystematic deviation for lower-performing shots is observed. The ratio between thermal and beam-induced D-T fusion is found to be increasing weakly with growing external heating power, with a maximum value of greater than or similar to 1 achieved in a baseline scenario experiment. An evaluation of the fusion power computational uncertainty shows a strong dependence on the plasma scenario type and fusion drive characteristics, varying between +/- 25% and 35%. D-T fusion alpha simulations show that the ratio between volume-integrated electron and ion heating from alphas is less than or similar to 10 for the majority of analysed discharges. Alphas are computed to contribute between similar to 15% and 40% to the total electron heating in the core of highest performing D-T discharges. An alternative workflow to TRANSP was employed to model JET D-T plasmas with the highest fusion yield and dominant non-thermal fusion component because of the use of fundamental radio-frequency heating of a large minority in the scenario, which is calculated to have provided similar to 10% to the total fusion power.
引用
收藏
页数:29
相关论文
共 22 条
  • [21] Overview of the different aspects in modelling moderate pressure H2 and H2/CH4 microwave discharges
    Hassouni, K
    Lombardi, G
    Duten, X
    Haagelar, G
    Silva, F
    Gicquel, A
    Grotjohn, TA
    Capitelli, M
    Röpcke, J
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2006, 15 (01): : 117 - 125
  • [22] Predictive multi-channel flux-driven modelling to optimise ICRH tungsten control and fusion performance in JET
    Casson, F. J.
    Patten, H.
    Bourdelle, C.
    Breton, S.
    Citrin, J.
    Koechl, F.
    Sertoli, M.
    Angioni, C.
    Baranov, Y.
    Bilato, R.
    Belli, E. A.
    Challis, C. D.
    Corrigan, G.
    Czarnecka, A.
    Ficker, O.
    Frassinetti, L.
    Garzotti, L.
    Goniche, M.
    Graves, J. P.
    Johnson, T.
    Kirov, K.
    Knight, P.
    Lerche, E.
    Mantsinen, M.
    Mylnar, J.
    Valisa, M.
    NUCLEAR FUSION, 2020, 60 (06)