Selective plasmonic trapping of nano-particles by Archimedes metalens

被引:0
|
作者
Liu, Weiwei [1 ,2 ,3 ]
Min, Changjun [1 ,2 ]
Zhang, Yuquan [1 ,2 ]
机构
[1] Shenzhen Univ, Inst Microscale Optoelect, Nanophoton Res Ctr, Shenzhen 518060, Guangdong, Peoples R China
[2] Shenzhen Univ, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Guangdong, Peoples R China
[3] Peng Cheng Lab PCL, Shenzhen 518055, Guangdong, Peoples R China
来源
OPTICS EXPRESS | 2023年 / 31卷 / 21期
基金
中国国家自然科学基金;
关键词
OPTICAL NEAR-FIELD; MANIPULATION; MICROPARTICLES;
D O I
10.1364/OE.497015
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical tweezer is a non-invasive method for optical force tool applied in various fields like biology, physics, and lab on chip manipulation. The Archimedean helix shape is ideal for creating chiral nanostructures, and being able to generate plasmonic focused hotspot field for optical trapping. Here we design a metal disk with the Archimedean shape to own the ability of selective trapping nanoparticles based on the spin-orbit interactions with circularly polarized light. The plasmonic near field on the metalens can be designed by adjusting the geometric parameter flexibly. We numerically analyze the optimal size and screw pitch of the metal disk to realize the switch modulation of hotspot generation, and then demonstrate the novel switchable optical trapping ability in the view of optical force and potential well analysis under the circularly polarized light excitation by a 532 nm laser. The work shows significant potential for on-chip optical trapping in various fields.
引用
收藏
页码:35354 / 35362
页数:9
相关论文
共 50 条
  • [41] On Response of Nano-particles to Electromagnetic Radiation
    Mukhopadhyay, Gautam
    FUNCTIONAL MATERIALS-BOOK, 2012, 1461 : 187 - 196
  • [42] Research and applications of nano-particles in Japan
    Hayashi, C
    Oda, M
    JOURNAL OF AEROSOL SCIENCE, 1998, 29 (5-6) : 757 - 760
  • [43] Polydisperse mixture of gold nano-particles
    Vicuña, E
    Viera, O
    Briano, JG
    Castro, M
    Irizarry, R
    Solá, L
    NANOTECH 2003, VOL 3, 2003, : 191 - 194
  • [44] Magnetic nano-particles and their applications in immunoassays
    Horng, H. E.
    Yang, S. Y.
    Hong, Chin-Yih
    Yang, H. C.
    Liao, S. H.
    Liu, C. M.
    Wu, C. C.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (05) : 999 - 1003
  • [45] Effective elastic modulus of nano-particles
    Dingreville, R
    Qu, JM
    Cherkaoui, M
    9TH INTERNATIONAL SYMPOSIUM ON ADVANCED PACKAGING MATERIALS: PROCESSES, PROPERTIES AND INTERFACES, 2004 PROCEEDINGS, 2004, : 187 - 192
  • [46] Effective elastic modulus of nano-particles
    Dingreville, R.
    Qu, J.
    Cherkaoui, M.
    IUTAM SYMPOSIUM ON SIZE EFFECTS ON MATERIAL AND STRUCTURAL BEHAVIOR AT MICRON- AND NANO-SCALES, 2006, 142 : 239 - +
  • [47] Magnetic normal modes in nano-particles
    Grimsditch, M
    Giovannini, L
    Montoncello, F
    Nizzoli, F
    Leaf, G
    Kaper, H
    Karpeev, D
    PHYSICA B-CONDENSED MATTER, 2004, 354 (1-4) : 266 - 270
  • [48] Fluidization behavior of nano-particles by adding coarse particles
    Song, Lianying
    Zhou, Tao
    Yang, Jingsi
    ADVANCED POWDER TECHNOLOGY, 2009, 20 (04) : 366 - 370
  • [49] Synthesis and characterization of silver nano-particles
    Zhang, Xiaomin
    Zhang, Zhenzhong
    Zhao, Fangxia
    Zhou, Hao
    Qiu, Tai
    Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2013, 33 (10): : 1037 - 1041
  • [50] Hydrothermally Synthesized Spherocobaltite Nano-Particles
    Mahatta Oza
    H. O. Jethva
    D. K. Kanchan
    M. J. Joshi
    Journal of Superconductivity and Novel Magnetism, 2020, 33 : 2459 - 2467