Selective plasmonic trapping of nano-particles by Archimedes metalens

被引:0
|
作者
Liu, Weiwei [1 ,2 ,3 ]
Min, Changjun [1 ,2 ]
Zhang, Yuquan [1 ,2 ]
机构
[1] Shenzhen Univ, Inst Microscale Optoelect, Nanophoton Res Ctr, Shenzhen 518060, Guangdong, Peoples R China
[2] Shenzhen Univ, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Guangdong, Peoples R China
[3] Peng Cheng Lab PCL, Shenzhen 518055, Guangdong, Peoples R China
来源
OPTICS EXPRESS | 2023年 / 31卷 / 21期
基金
中国国家自然科学基金;
关键词
OPTICAL NEAR-FIELD; MANIPULATION; MICROPARTICLES;
D O I
10.1364/OE.497015
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical tweezer is a non-invasive method for optical force tool applied in various fields like biology, physics, and lab on chip manipulation. The Archimedean helix shape is ideal for creating chiral nanostructures, and being able to generate plasmonic focused hotspot field for optical trapping. Here we design a metal disk with the Archimedean shape to own the ability of selective trapping nanoparticles based on the spin-orbit interactions with circularly polarized light. The plasmonic near field on the metalens can be designed by adjusting the geometric parameter flexibly. We numerically analyze the optimal size and screw pitch of the metal disk to realize the switch modulation of hotspot generation, and then demonstrate the novel switchable optical trapping ability in the view of optical force and potential well analysis under the circularly polarized light excitation by a 532 nm laser. The work shows significant potential for on-chip optical trapping in various fields.
引用
收藏
页码:35354 / 35362
页数:9
相关论文
共 50 条
  • [21] Refractive index sensing using a linear graded plasmonic chain of metal nano-particles
    Horchani, Ridha
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (03) : 1247 - 1251
  • [22] Optical trapping of single nano-size particles using a plasmonic nanocavity
    Zhang, Jiachen
    Lu, Fanfan
    Zhang, Wending
    Yu, Weixing
    Zhu, Weiren
    Premaratne, Malin
    Mei, Ting
    Xiao, Fajun
    Zhao, Jianlin
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (47)
  • [23] Exploring the Impact of Nano-Particles Shape on the Performance of Plasmonic Based Fiber Optics Sensors
    Mahros, Amr M.
    Tharwat, Marwa M.
    Elrashidi, Ali
    PLASMONICS, 2017, 12 (03) : 563 - 570
  • [24] Nano-Particles in Heterogeneous Catalysis
    Molenbroek, Alfons M.
    Helveg, Stig
    Topsoe, Henrik
    Clausen, Bjerne S.
    TOPICS IN CATALYSIS, 2009, 52 (10) : 1303 - 1311
  • [25] Monitoring and measuring nano-particles
    Scarlett, B
    NANOSTRUCTURED MATERIALS, 1995, 6 (1-4): : 25 - 32
  • [26] Filtering out nano-particles
    Automotive Industries AI, 2006, 186 (07):
  • [27] Diffusion of Nano-Particles in Gels
    Pokusaev, Boris G.
    Karlov, Sergey P.
    Vyazmin, Andrey V.
    Nekrasov, Dmitry A.
    INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY BASED INNOVATIVE APPLICATIONS FOR THE ENVIRONMENT, 2016, 47 : 91 - 96
  • [28] Nano-Particles in Heterogeneous Catalysis
    Alfons M. Molenbroek
    Stig Helveg
    Henrik Topsøe
    Bjerne S. Clausen
    Topics in Catalysis, 2009, 52 : 1303 - 1311
  • [29] Properties of magnetic nano-particles
    Lindgard, PA
    ACTA PHYSICA POLONICA A, 1997, 91 (01) : 121 - 133
  • [30] Dielectrophoretic separation of nano-particles
    Green, NG
    Morgan, H
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (11) : L41 - L44