MacWilliams' Extension Theorem for rank-metric codes

被引:0
|
作者
Gorla, Elisa
Salizzoni, Flavio
机构
关键词
Rank-metric codes; Isometries; MacWilliams' Extension Theorem; WEIGHTS; PROOF; LEE;
D O I
10.1016/j.jsc.2023.102263
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The MacWilliams' Extension Theorem is a classical result by Florence Jessie MacWilliams. It shows that every linear isometry between linear block-codes endowed with the Hamming distance can be extended to a linear isometry of the ambient space. Such an extension fails to exist in general for rank-metric codes, that is, one can easily find examples of linear isometries between rank-metric codes which cannot be extended to linear isometries of the ambient space. In this paper, we explore to what extent a MacWilliams' Extension Theorem may hold for rank-metric codes. We provide an extensive list of examples of obstructions to the existence of an extension, as well as a positive result. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:14
相关论文
共 50 条
  • [31] On Decoding Rank-Metric Codes over Large Fields
    Roth, Ron M.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2756 - 2760
  • [32] Optimal Ferrers diagram rank-metric codes from MRD codes
    Shuangqing Liu
    Designs, Codes and Cryptography, 2023, 91 : 3977 - 3993
  • [33] Constructions for Optimal Ferrers Diagram Rank-Metric Codes
    Liu, Shuangqing
    Chang, Yanxun
    Feng, Tao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) : 4115 - 4130
  • [34] q-polymatroids and their relation to rank-metric codes
    Gluesing-Luerssen, Heide
    Jany, Benjamin
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (03) : 725 - 753
  • [35] RANK-METRIC CODES, SEMIFIELDS, AND THE AVERAGE CRITICAL PROBLEM
    Gruica, A. N. I. N. A.
    Ravagnani, A. L. B. E. R. T. O.
    Sheekey, J. O. H. N.
    Zullo, F. E. R. D. I. N. A. N. D. O.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1079 - 1117
  • [36] Higher-Degree Symmetric Rank-Metric Codes
    Bik, Arthur
    Neri, Alessandro
    SIAM Journal on Applied Algebra and Geometry, 2024, 8 (04) : 931 - 967
  • [37] q-polymatroids and their relation to rank-metric codes
    Heide Gluesing-Luerssen
    Benjamin Jany
    Journal of Algebraic Combinatorics, 2022, 56 : 725 - 753
  • [38] Space-Time Codes Based on Rank-Metric Codes and Their Decoding
    Puchinger, Sven
    Stern, Sebastian
    Bossert, Martin
    Fischer, Robert F. H.
    2016 13TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS), 2016, : 125 - 130
  • [39] Optimal Ferrers diagram rank-metric codes from MRD codes
    Liu, Shuangqing
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (12) : 3977 - 3993
  • [40] Equivalence for Rank-Metric and Matrix Codes and Automorphism Groups of Gabidulin Codes
    Morrison, Katherine
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) : 7035 - 7046