MacWilliams' Extension Theorem for rank-metric codes

被引:0
|
作者
Gorla, Elisa
Salizzoni, Flavio
机构
关键词
Rank-metric codes; Isometries; MacWilliams' Extension Theorem; WEIGHTS; PROOF; LEE;
D O I
10.1016/j.jsc.2023.102263
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The MacWilliams' Extension Theorem is a classical result by Florence Jessie MacWilliams. It shows that every linear isometry between linear block-codes endowed with the Hamming distance can be extended to a linear isometry of the ambient space. Such an extension fails to exist in general for rank-metric codes, that is, one can easily find examples of linear isometries between rank-metric codes which cannot be extended to linear isometries of the ambient space. In this paper, we explore to what extent a MacWilliams' Extension Theorem may hold for rank-metric codes. We provide an extensive list of examples of obstructions to the existence of an extension, as well as a positive result. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Weight distribution of rank-metric codes
    Javier de la Cruz
    Elisa Gorla
    Hiram H. López
    Alberto Ravagnani
    Designs, Codes and Cryptography, 2018, 86 : 1 - 16
  • [12] Rank-metric complementary dual codes
    Xiusheng Liu
    Hualu Liu
    Journal of Applied Mathematics and Computing, 2019, 61 : 281 - 295
  • [13] On maximum additive Hermitian rank-metric codes
    Trombetti, Rocco
    Zullo, Ferdinando
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (01) : 151 - 171
  • [14] Insdel codes from subspace and rank-metric codes
    Aggarwal, Vaneet
    Pratihar, Rakhi
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [15] Rank-metric codes and q-polymatroids
    Elisa Gorla
    Relinde Jurrius
    Hiram H. López
    Alberto Ravagnani
    Journal of Algebraic Combinatorics, 2020, 52 : 1 - 19
  • [16] Bounds on List Decoding of Rank-Metric Codes
    Wachter-Zeh, Antonia
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) : 7268 - 7277
  • [17] On maximum additive Hermitian rank-metric codes
    Rocco Trombetti
    Ferdinando Zullo
    Journal of Algebraic Combinatorics, 2021, 54 : 151 - 171
  • [18] Rank-metric codes andq-polymatroids
    Gorla, Elisa
    Jurrius, Relinde
    Lopez, Hiram H.
    Ravagnani, Alberto
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 52 (01) : 1 - 19
  • [19] Rank-metric codes, linear sets, and their duality
    Sheekey, John
    Van de Voorde, Geertrui
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 655 - 675
  • [20] Rank-metric codes, linear sets, and their duality
    John Sheekey
    Geertrui Van de Voorde
    Designs, Codes and Cryptography, 2020, 88 : 655 - 675