Progressive Feedback Residual Attention Network for Cardiac Magnetic Resonance Imaging Super-Resolution

被引:18
|
作者
Qiu, Defu [1 ,2 ]
Cheng, Yuhu [1 ,2 ]
Wang, Xuesong [1 ,2 ]
机构
[1] China Univ Min & Technol, Engn Res Ctr Intelligent Control Underground Spa, Minist Educ, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Cardiac magnetic resonance imaging (CMRI); super-resolution; feedback mechanism; residual learning; attention module; ATRIAL-FIBRILLATION;
D O I
10.1109/JBHI.2023.3272155
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Atrial fibrillation (AF) is an increasing medical burden worldwide, and its pathological manifestations are atrial tissue remodeling and low-pressure atrial tissue fibrosis. Due to the inherent defects of medical image data acquisition systems, the acquisition of high-resolution cardiac magnetic resonance imaging (CMRI) faces many problems. In response to these problems, we propose the Progressive Feedback Residual Attention Network (PFRN) for CMRI super-resolution. Specifically, we directly perform feature extraction on low-resolution images, retain feature information to a large extent, and then build multiple independent progressive feedback modules to extract high-frequency details. To accelerate network convergence and improve image reconstruction quality, we implement the MS-SSIM-L1 loss function. Furthermore, we utilize the residual attention stack module to explore the image's internal relevance and extract the low-resolution image's detailed features. Extensive benchmark evaluation shows that PFRN can improve the detailed information of the image SR reconstruction results, and the reconstructed CMRI has a better visual effect.
引用
收藏
页码:3478 / 3488
页数:11
相关论文
共 50 条
  • [41] Wavelet-based residual attention network for image super-resolution
    Xue, Shengke
    Qiu, Wenyuan
    Liu, Fan
    Jin, Xinyu
    NEUROCOMPUTING, 2020, 382 : 116 - 126
  • [42] HRAN: Hybrid Residual Attention Network for Single Image Super-Resolution
    Muqeet, Abdul
    Bin Iqbal, Md Tauhid
    Bae, Sung-Ho
    IEEE ACCESS, 2019, 7 : 137020 - 137029
  • [43] Mixed Attention Densely Residual Network for Single Image Super-Resolution
    Zhou, Jingjun
    Liu, Jing
    Li, Jingbing
    Huang, Mengxing
    Cheng, Jieren
    Chen, Yen-Wei
    Xu, Yingying
    Nawaz, Saqib Ali
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 39 (01): : 133 - 146
  • [44] Wavelet-based residual attention network for image super-resolution
    Xue, Shengke
    Qiu, Wenyuan
    Liu, Fan
    Jin, Xinyu
    Xue, Shengke (xueshengke@zju.edu.cn), 1600, Elsevier B.V., Netherlands (382): : 116 - 126
  • [45] Novel Channel Attention Residual Network for Single Image Super-Resolution
    Shi W.
    Du H.
    Mei W.
    Journal of Beijing Institute of Technology (English Edition), 2020, 29 (03): : 345 - 353
  • [46] Multi kernel cross sparse graph attention convolutional neural network for brain magnetic resonance imaging super-resolution
    Hua, Xin
    Du, Zhijiang
    Ma, Jixin
    Yu, Hongjian
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [47] Edge-Enhanced with Feedback Attention Network for Image Super-Resolution
    Fu, Chunmei
    Yin, Yong
    SENSORS, 2021, 21 (06) : 1 - 16
  • [48] Flexible Alignment Super-Resolution Network for Multi-Contrast Magnetic Resonance Imaging
    Liu, Yiming
    Zhang, Mengxi
    Jiang, Bo
    Hou, Bo
    Liu, Dan
    Chen, Jie
    Lian, Heqing
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5159 - 5169
  • [49] Attention hierarchical network for super-resolution
    Zhaoyang Song
    Xiaoqiang Zhao
    Yongyong Hui
    Hongmei Jiang
    Multimedia Tools and Applications, 2023, 82 : 46351 - 46369
  • [50] Attention hierarchical network for super-resolution
    Song, Zhaoyang
    Zhao, Xiaoqiang
    Hui, Yongyong
    Jiang, Hongmei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (30) : 46351 - 46369