Progressive Feedback Residual Attention Network for Cardiac Magnetic Resonance Imaging Super-Resolution

被引:18
|
作者
Qiu, Defu [1 ,2 ]
Cheng, Yuhu [1 ,2 ]
Wang, Xuesong [1 ,2 ]
机构
[1] China Univ Min & Technol, Engn Res Ctr Intelligent Control Underground Spa, Minist Educ, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Cardiac magnetic resonance imaging (CMRI); super-resolution; feedback mechanism; residual learning; attention module; ATRIAL-FIBRILLATION;
D O I
10.1109/JBHI.2023.3272155
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Atrial fibrillation (AF) is an increasing medical burden worldwide, and its pathological manifestations are atrial tissue remodeling and low-pressure atrial tissue fibrosis. Due to the inherent defects of medical image data acquisition systems, the acquisition of high-resolution cardiac magnetic resonance imaging (CMRI) faces many problems. In response to these problems, we propose the Progressive Feedback Residual Attention Network (PFRN) for CMRI super-resolution. Specifically, we directly perform feature extraction on low-resolution images, retain feature information to a large extent, and then build multiple independent progressive feedback modules to extract high-frequency details. To accelerate network convergence and improve image reconstruction quality, we implement the MS-SSIM-L1 loss function. Furthermore, we utilize the residual attention stack module to explore the image's internal relevance and extract the low-resolution image's detailed features. Extensive benchmark evaluation shows that PFRN can improve the detailed information of the image SR reconstruction results, and the reconstructed CMRI has a better visual effect.
引用
收藏
页码:3478 / 3488
页数:11
相关论文
共 50 条
  • [31] Dual U-Net residual networks for cardiac magnetic resonance images super-resolution
    Qiu, Defu
    Cheng, Yuhu
    Wang, Xuesong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 218
  • [32] Novel Channel Attention Residual Network for Single Image Super-Resolution
    Wenling Shi
    Huiqian Du
    Wenbo Mei
    JournalofBeijingInstituteofTechnology, 2020, 29 (03) : 345 - 353
  • [33] Single-image super-resolution with multilevel residual attention network
    Ding Qin
    Xiaodong Gu
    Neural Computing and Applications, 2020, 32 : 15615 - 15628
  • [34] Inception residual attention network for remote sensing image super-resolution
    Lei, Pengcheng
    Liu, Cong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (24) : 9565 - 9587
  • [35] Polarimetric ISAR Super-Resolution Based on Group Residual Attention Network
    Li, MingDian
    Cui, XingChao
    Yang, ChengLi
    Xiao, ShunPing
    Chen, SiWei
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2022), 2022, : 566 - 571
  • [36] CASCADE ATTENTION BLEND RESIDUAL NETWORK FOR SINGLE IMAGE SUPER-RESOLUTION
    Chen, Tianyu
    Xiao, Guoqiang
    Tang, Xiaoqin
    Han, Xianfeng
    Ma, Wenzhuo
    Gou, Xinye
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 559 - 563
  • [37] Residual Triplet Attention Network for Single-Image Super-Resolution
    Huang, Feng
    Wang, Zhifeng
    Wu, Jing
    Shen, Ying
    Chen, Liqiong
    ELECTRONICS, 2021, 10 (17)
  • [38] Dual U-Net residual networks for cardiac magnetic resonance images super-resolution
    Qiu, Defu
    Cheng, Yuhu
    Wang, Xuesong
    Computer Methods and Programs in Biomedicine, 2022, 218
  • [39] Residual scale attention network for arbitrary scale image super-resolution
    Fu, Ying
    Chen, Jian
    Zhang, Tao
    Lin, Yonggang
    NEUROCOMPUTING, 2021, 427 : 201 - 211
  • [40] Self-calibrated Attention Residual Network for Image Super-Resolution
    Rong, Anqi
    Zhao, Li
    Huang, Pengcheng
    Xu, Jiawei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3325 - 3332