Multitask Machine Learning to Predict Polymer-Solvent Miscibility Using Flory-Huggins Interaction Parameters

被引:20
|
作者
Aoki, Yuta [1 ]
Wu, Stephen [1 ,2 ]
Tsurimoto, Teruki [3 ]
Hayashi, Yoshihiro [1 ,2 ]
Minami, Shunya [1 ,2 ]
Tadamichi, Okubo [3 ]
Shiratori, Kazuya [3 ]
Yoshida, Ryo [1 ,2 ,4 ]
机构
[1] Res Org Informat & Syst, Inst Stat Math, Tachikawa 1908562, Japan
[2] Grad Univ Adv Studies, Dept Stat Sci, Tachikawa 1908562, Japan
[3] Mitsubishi Chem Corp, Sci & Innovat Ctr, Yokohama 2278502, Japan
[4] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst, Tsukuba 3050047, Japan
基金
日本学术振兴会;
关键词
PHASE-BEHAVIOR; MONOMER STRUCTURE; THERMODYNAMICS; SOLUBILITY; EQUATION; COMPRESSIBILITY; COEFFICIENTS; DEPENDENCE; BLENDS; SYSTEM;
D O I
10.1021/acs.macromol.2c02600
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Predicting and understandingthe phase equilibria or phase separationin polymer-solvent solutions represent unresolved fundamentalproblems in polymer science. The phase behavior and thermodynamicsof polymer miscibility depend on the inter- and intramolecular interactionsof a polymer with a certain molecular weight distribution mixed witha solvent. Here, we develop a machine-learning framework to achievehighly generalized and robust prediction of Flory-Huggins & chi;parameters for polymer-solvent solutions. The model was trainedusing experimentally observed temperature-dependent & chi; parametersfor 1190 samples, comprising 46 unique polymers and 140 solvent species.However, the difficulty was that the data set was quantitatively limitedand qualitatively biased owing to technical issues in determiningthe Flory-Huggins & chi; parameters. To overcome these limitations,we produced an in-house data set of & chi; parameters obtained fromquantum chemical calculations for thousands of polymer-solventpairs and a large list of soluble and insoluble polymer-solventpairs. Using these three data sets, we conducted multitask machinelearning that simultaneously performed the "soluble/insoluble"classification and quantitative evaluation of both experimental andcalculated & chi; parameters. Consequently, we obtained a highlygeneralized model applicable to a wide range of polymer solution spaces.In this paper, the predictive power and physicochemical implicationsof the model are demonstrated, along with quantitative comparisonswith existing methods.
引用
收藏
页码:5446 / 5456
页数:11
相关论文
共 50 条
  • [41] Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model
    Sadeghi, Arash
    Nazem, Hadi
    Rezakazemi, Mashallah
    Shirazian, Saeed
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 263 : 282 - 287
  • [42] Investigation of the Dependence of the Flory-Huggins Interaction Parameter on Temperature and Composition in a Drug-Polymer System
    Potter, Catherine B.
    Davis, Mark T.
    Albadarin, Ahmad B.
    Walker, Gavin M.
    MOLECULAR PHARMACEUTICS, 2018, 15 (11) : 5327 - 5335
  • [44] PRESSURE-DEPENDENCE OF THE FLORY-HUGGINS INTERACTION PARAMETER IN BINARY POLYMER BLENDS INVESTIGATED BY SANS
    JANSSEN, S
    SCHWAHN, D
    MORTENSEN, K
    SPRINGER, T
    JOURNAL DE PHYSIQUE IV, 1993, 3 (C8): : 17 - 20
  • [45] SYSTEMATIC CORRECTIONS TO FLORY-HUGGINS THEORY - POLYMER SOLVENT VOID SYSTEMS AND BINARY BLEND VOID SYSTEMS
    BAWENDI, MG
    FREED, KF
    JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (04): : 2741 - 2756
  • [46] Probe dependency of flory-huggins interaction parameters between solvents: Cases of hydrocarbons and isosteric derivatives
    Huang, Jan-Chan
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (06) : 5000 - 5006
  • [47] Non-intuitive Trends in Flory-Huggins Interaction Parameters in Polyether-Based Polymers
    Antoine, Segolene
    Geng, Zhishuai
    Zofchak, Everett S.
    Chwatko, Malgorzata
    Fredrickson, Glenn H.
    Ganesan, Venkat
    Hawker, Craig J.
    Lynd, Nathaniel A.
    Segalman, Rachel A.
    MACROMOLECULES, 2021, 54 (14) : 6670 - 6677
  • [48] RELATIONSHIP BETWEEN THE GRUNEISEN-PARAMETER, FLORY-HUGGINS INTERACTION PARAMETER AND OTHER THERMOACOUSTIC PARAMETERS IN DILUTE POLYMER-SOLUTIONS
    SHARMA, BK
    JOURNAL DE PHYSIQUE IV, 1994, 4 (C5): : 713 - 716
  • [49] A Machine Learning Study of Polymer-Solvent Interactions
    Ting-Li Liu
    Lun-Yang Liu
    Fang Ding
    Yun-Qi Li
    Chinese Journal of Polymer Science, 2022, 40 : 834 - 842
  • [50] A Machine Learning Study of Polymer-Solvent Interactions
    Ting-Li Liu
    Lun-Yang Liu
    Fang Ding
    Yun-Qi Li
    Chinese Journal of Polymer Science, 2022, 40 (07) : 834 - 842