Multitask Machine Learning to Predict Polymer-Solvent Miscibility Using Flory-Huggins Interaction Parameters

被引:20
|
作者
Aoki, Yuta [1 ]
Wu, Stephen [1 ,2 ]
Tsurimoto, Teruki [3 ]
Hayashi, Yoshihiro [1 ,2 ]
Minami, Shunya [1 ,2 ]
Tadamichi, Okubo [3 ]
Shiratori, Kazuya [3 ]
Yoshida, Ryo [1 ,2 ,4 ]
机构
[1] Res Org Informat & Syst, Inst Stat Math, Tachikawa 1908562, Japan
[2] Grad Univ Adv Studies, Dept Stat Sci, Tachikawa 1908562, Japan
[3] Mitsubishi Chem Corp, Sci & Innovat Ctr, Yokohama 2278502, Japan
[4] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst, Tsukuba 3050047, Japan
基金
日本学术振兴会;
关键词
PHASE-BEHAVIOR; MONOMER STRUCTURE; THERMODYNAMICS; SOLUBILITY; EQUATION; COMPRESSIBILITY; COEFFICIENTS; DEPENDENCE; BLENDS; SYSTEM;
D O I
10.1021/acs.macromol.2c02600
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Predicting and understandingthe phase equilibria or phase separationin polymer-solvent solutions represent unresolved fundamentalproblems in polymer science. The phase behavior and thermodynamicsof polymer miscibility depend on the inter- and intramolecular interactionsof a polymer with a certain molecular weight distribution mixed witha solvent. Here, we develop a machine-learning framework to achievehighly generalized and robust prediction of Flory-Huggins & chi;parameters for polymer-solvent solutions. The model was trainedusing experimentally observed temperature-dependent & chi; parametersfor 1190 samples, comprising 46 unique polymers and 140 solvent species.However, the difficulty was that the data set was quantitatively limitedand qualitatively biased owing to technical issues in determiningthe Flory-Huggins & chi; parameters. To overcome these limitations,we produced an in-house data set of & chi; parameters obtained fromquantum chemical calculations for thousands of polymer-solventpairs and a large list of soluble and insoluble polymer-solventpairs. Using these three data sets, we conducted multitask machinelearning that simultaneously performed the "soluble/insoluble"classification and quantitative evaluation of both experimental andcalculated & chi; parameters. Consequently, we obtained a highlygeneralized model applicable to a wide range of polymer solution spaces.In this paper, the predictive power and physicochemical implicationsof the model are demonstrated, along with quantitative comparisonswith existing methods.
引用
收藏
页码:5446 / 5456
页数:11
相关论文
共 50 条
  • [31] Flory-Huggins Parameters for Thiol-ene Networks Using Hansen Solubility Parameters
    Bongiardina, Nicholas J.
    Sinha, Jasmine
    Bowman, Christopher N.
    MACROMOLECULES, 2021, 54 (24) : 11439 - 11448
  • [32] Composition Dependency of the Flory-Huggins Interaction Parameter in Drug-Polymer Phase Behavior
    Klueppelberg, Jana
    Handge, Ulrich A.
    Thommes, Markus
    Winck, Judith
    PHARMACEUTICS, 2023, 15 (12)
  • [33] HITHERTO IGNORED EFFECTS OF CHAIN-LENGTH ON THE FLORY-HUGGINS INTERACTION PARAMETERS IN CONCENTRATED POLYMER-SOLUTIONS
    PETRI, HM
    SCHULD, N
    WOLF, BA
    MACROMOLECULES, 1995, 28 (14) : 4975 - 4980
  • [34] Measurement of solvent-independent polymer-polymer Flory-Huggins interaction parameters with the use of non-random partitioning solvents in inverse gas chromatography
    Zhao, LY
    Choi, P
    POLYMER, 2002, 43 (25) : 6677 - 6681
  • [35] Composition Dependence of the Flory-Huggins Interaction Parameters of Block Copolymer Electrolytes and the Isotaksis Point
    Loo, Whitney S.
    Sethi, Gurmukh K.
    Teran, Alexander A.
    Galluzzo, Michael D.
    Maslyn, Jacqueline A.
    Oh, Hee Jeung
    Mongcopa, Katrina I.
    Balsara, Nitash P.
    MACROMOLECULES, 2019, 52 (15) : 5590 - 5601
  • [36] Predicting the phase behavior of ABAC tetrablock terpolymers: Sensitivity to Flory-Huggins interaction parameters
    Arora, Akash
    Pillai, Naveen
    Bates, Frank S.
    Dorfman, Kevin D.
    POLYMER, 2018, 154 : 305 - 314
  • [37] Pullulan and dextran: Uncommon composition dependent Flory-Huggins interaction parameters of their aqueous solutions
    Eckelt, John
    Sugaya, Rei
    Wolf, Bernhard A.
    BIOMACROMOLECULES, 2008, 9 (06) : 1691 - 1697
  • [38] Measurements of the Flory-Huggins interaction parameter using a series of critical binary blends
    Nedoma, Alisyn J.
    Robertson, Megan L.
    Wanakule, Nisita S.
    Balsara, Nitash P.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (10) : 3551 - 3553
  • [39] Prediction of drug-polymer miscibility through the use of solubility parameter based flory-huggins interaction parameter and the experimental validation: PEG as model polymer
    Thakral, Seema
    Thakral, Naveen K.
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2013, 102 (07) : 2254 - 2263
  • [40] USE OF INVERSE GAS-CHROMATOGRAPHY TO ESTIMATE FLORY-HUGGINS INTERACTION PARAMETERS AND SOLUBILITY PARAMETERS OF SURFACTANTS
    CHOI, P
    KAVASSALIS, T
    RUDIN, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 207 : 250 - PMSE