Multitask Machine Learning to Predict Polymer-Solvent Miscibility Using Flory-Huggins Interaction Parameters

被引:20
|
作者
Aoki, Yuta [1 ]
Wu, Stephen [1 ,2 ]
Tsurimoto, Teruki [3 ]
Hayashi, Yoshihiro [1 ,2 ]
Minami, Shunya [1 ,2 ]
Tadamichi, Okubo [3 ]
Shiratori, Kazuya [3 ]
Yoshida, Ryo [1 ,2 ,4 ]
机构
[1] Res Org Informat & Syst, Inst Stat Math, Tachikawa 1908562, Japan
[2] Grad Univ Adv Studies, Dept Stat Sci, Tachikawa 1908562, Japan
[3] Mitsubishi Chem Corp, Sci & Innovat Ctr, Yokohama 2278502, Japan
[4] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst, Tsukuba 3050047, Japan
基金
日本学术振兴会;
关键词
PHASE-BEHAVIOR; MONOMER STRUCTURE; THERMODYNAMICS; SOLUBILITY; EQUATION; COMPRESSIBILITY; COEFFICIENTS; DEPENDENCE; BLENDS; SYSTEM;
D O I
10.1021/acs.macromol.2c02600
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Predicting and understandingthe phase equilibria or phase separationin polymer-solvent solutions represent unresolved fundamentalproblems in polymer science. The phase behavior and thermodynamicsof polymer miscibility depend on the inter- and intramolecular interactionsof a polymer with a certain molecular weight distribution mixed witha solvent. Here, we develop a machine-learning framework to achievehighly generalized and robust prediction of Flory-Huggins & chi;parameters for polymer-solvent solutions. The model was trainedusing experimentally observed temperature-dependent & chi; parametersfor 1190 samples, comprising 46 unique polymers and 140 solvent species.However, the difficulty was that the data set was quantitatively limitedand qualitatively biased owing to technical issues in determiningthe Flory-Huggins & chi; parameters. To overcome these limitations,we produced an in-house data set of & chi; parameters obtained fromquantum chemical calculations for thousands of polymer-solventpairs and a large list of soluble and insoluble polymer-solventpairs. Using these three data sets, we conducted multitask machinelearning that simultaneously performed the "soluble/insoluble"classification and quantitative evaluation of both experimental andcalculated & chi; parameters. Consequently, we obtained a highlygeneralized model applicable to a wide range of polymer solution spaces.In this paper, the predictive power and physicochemical implicationsof the model are demonstrated, along with quantitative comparisonswith existing methods.
引用
收藏
页码:5446 / 5456
页数:11
相关论文
共 50 条
  • [1] Estimation of the Flory-Huggins interaction parameter of polymer-solvent mixtures using machine learning
    Nistane, Janhavi
    Chen, Lihua
    Lee, Youngjoo
    Lively, Ryan
    Ramprasad, Rampi
    MRS COMMUNICATIONS, 2022, 12 (06) : 1096 - 1102
  • [2] Estimation of the Flory-Huggins interaction parameter of polymer-solvent mixtures using machine learning
    Janhavi Nistane
    Lihua Chen
    Youngjoo Lee
    Ryan Lively
    Rampi Ramprasad
    MRS Communications, 2022, 12 : 1096 - 1102
  • [3] Data-Driven Prediction of Flory-Huggins Parameter for Quantifying Polymer-Solvent Interaction
    Zhu, Jiayi
    Lin, Li-Hong
    Niu, Haoren
    Shang, Qiaoyan
    Wang, Qiang
    Yan, Fangyou
    Li, Jin-Jin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2025,
  • [4] Rationalizing the meaning of coefficients in Flory-Huggins approach to polymer-solvent interactions
    Lucchelli, E
    Caccianotti, L
    MACROMOLECULAR SYMPOSIA, 2003, 203 : 225 - 228
  • [5] Modeling of the Flory-Huggins parameter for oxygen-containing polymer-solvent systems
    Toropov, AA
    Voropaeva, NL
    Ruban, IN
    Rashidova, SS
    POLYMER SCIENCE SERIES A, 2001, 43 (09) : 976 - 980
  • [6] Modeling of the Flory-Huggins parameter for oxygen-containing polymer-solvent systems
    Toropov, A.A.
    Voropaeva, N.L.
    Ruban, I.N.
    Rashidova, S.Sh.
    Vysokomolekularnye Soedineniya. Ser.A Ser.B Ser.C - Kratkie Soobshcheniya, 2001, 43 (09): : 1555 - 1559
  • [7] Blend miscibility and the Flory-Huggins interaction parameter: A critical examination
    Tambasco, Michael
    Lipson, J. E. G.
    Higgins, Julia S.
    MACROMOLECULES, 2006, 39 (14) : 4860 - 4868
  • [8] Molecular Modeling Approach to Determine the Flory-Huggins Interaction Parameter for Polymer Miscibility Analysis
    Callaway, Connor P.
    Hendrickson, Kayla
    Bond, Nicholas
    Lee, Seung Min
    Sood, Parveen
    Jang, Seung Soon
    CHEMPHYSCHEM, 2018, 19 (13) : 1655 - 1664
  • [9] Application of QSPR to Binary Polymer/Solvent Mixtures: Prediction of Flory-Huggins Parameters
    Xu, Jie
    Liu, Hongtao
    Li, Wenbin
    Zou, Hantao
    Xu, Weilin
    MACROMOLECULAR THEORY AND SIMULATIONS, 2008, 17 (09) : 470 - 477
  • [10] Characterization of the Flory-Huggins interaction parameter of polymer thermodynamics
    Russell, Travis H.
    Edwards, Brian J.
    Khomami, Bamin
    EPL, 2014, 108 (06)