Nested Markov chain hyper-heuristic (NMHH): a hybrid hyper-heuristic framework for single-objective continuous problems

被引:0
|
作者
Bandi, Nandor [1 ]
Gasko, Noemi [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca, Romania
关键词
Continuous optimization; Hyperheuristics; OPTIMIZATION;
D O I
10.7717/peerj-cs.1785
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article introduces a new hybrid hyper-heuristic framework that deals with singleobjective continuous optimization problems. This approach employs a nested Markov chain on the base level in the search for the best-performing operators and their sequences and simulated annealing on the hyperlevel, which evolves the chain and the operator parameters. The novelty of the approach consists of the upper level of the Markov chain expressing the hybridization of global and local search operators and the lower level automatically selecting the best-performing operator sequences for the problem. Numerical experiments conducted on well-known benchmark functions and the comparison with another hyper-heuristic framework and six state-of-the-art metaheuristics show the effectiveness of the proposed approach.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [21] A grouping hyper-heuristic framework: Application on graph colouring
    Elhag, Anas
    Oezcan, Ender
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (13) : 5491 - 5507
  • [22] Hyper-heuristic local search for combinatorial optimisation problems
    Turky, Ayad
    Sabar, Nasser R.
    Dunstall, Simon
    Song, Andy
    KNOWLEDGE-BASED SYSTEMS, 2020, 205
  • [23] Hyper-heuristic for CVRP with reinforcement learning
    Zhang J.
    Feng Q.
    Zhao Y.
    Liu J.
    Leng L.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2020, 26 (04): : 1118 - 1129
  • [24] A Hyper-Heuristic Scheduling Algorithm for Cloud
    Tsai, Chun-Wei
    Huang, Wei-Cheng
    Chiang, Meng-Hsiu
    Chiang, Ming-Chao
    Yang, Chu-Sing
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2014, 2 (02) : 236 - 250
  • [25] MatHH: A Matlab-based Hyper-Heuristic framework
    Cruz-Duarte, Jorge M.
    Ortiz-Bayliss, Jose C.
    Amaya, Ivan
    SOFTWAREX, 2022, 18
  • [26] An analysis of heuristic subsequences for offline hyper-heuristic learning
    W. B. Yates
    E. C. Keedwell
    Journal of Heuristics, 2019, 25 : 399 - 430
  • [27] A RNN-Based Hyper-heuristic for Combinatorial Problems
    Kieffer, Emmanuel
    Duflo, Gabriel
    Danoy, Gregoire
    Varrette, Sebastien
    Bouvry, Pascal
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, EVOCOP 2022, 2022, 13222 : 17 - 32
  • [28] Hyper-heuristic Decision Tree Induction
    Vella, Alan
    Corne, David
    Murphy, Chris
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 408 - +
  • [29] Evolutionary Multilabel Hyper-Heuristic Design
    Rosales-Perez, Alejandro
    Gutierrez-Rodriguez, Andres E.
    Ortiz-Bayliss, Jose C.
    Terashima-Marin, Hugo
    Coello Coello, Carlos A.
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 2622 - 2629
  • [30] Searching the Hyper-heuristic Design Space
    Swan, Jerry
    Woodward, John
    Ozcan, Ender
    Kendall, Graham
    Burke, Edmund
    COGNITIVE COMPUTATION, 2014, 6 (01) : 66 - 73