Nested Markov chain hyper-heuristic (NMHH): a hybrid hyper-heuristic framework for single-objective continuous problems

被引:0
|
作者
Bandi, Nandor [1 ]
Gasko, Noemi [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca, Romania
关键词
Continuous optimization; Hyperheuristics; OPTIMIZATION;
D O I
10.7717/peerj-cs.1785
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article introduces a new hybrid hyper-heuristic framework that deals with singleobjective continuous optimization problems. This approach employs a nested Markov chain on the base level in the search for the best-performing operators and their sequences and simulated annealing on the hyperlevel, which evolves the chain and the operator parameters. The novelty of the approach consists of the upper level of the Markov chain expressing the hybridization of global and local search operators and the lower level automatically selecting the best-performing operator sequences for the problem. Numerical experiments conducted on well-known benchmark functions and the comparison with another hyper-heuristic framework and six state-of-the-art metaheuristics show the effectiveness of the proposed approach.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [11] A Cooperative Distributed Hyper-heuristic Framework for Scheduling
    Ouelhadj, Djamila
    Petrovic, Sanja
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2559 - 2564
  • [12] Design for a novel framework of hyper-heuristic algorithm
    Guo, Wei-An
    Wang, Lei
    Chen, Ming
    Liu, Jin-Fei
    Wu, Qi-Di
    Journal of Donghua University (English Edition), 2014, 31 (02) : 109 - 112
  • [13] A Hyper-Heuristic Approach to Strip Packing Problems
    Burke, Edmund K.
    Guo, Qiang
    Kendall, Graham
    PARALLEL PROBLEMS SOLVING FROM NATURE - PPSN XI, PT I, 2010, 6238 : 465 - 474
  • [14] A hyper-heuristic guided by a probabilistic graphical model for single-objective real-parameter optimization
    Oliva, Diego
    Martins, Marcella S. R.
    Hinojosa, Salvador
    Abd Elaziz, Mohamed
    dos Santos, Paulo Victor
    da Cruz, Gelson
    Mousavirad, Seyed Jalaleddin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (12) : 3743 - 3772
  • [15] A hyper-heuristic guided by a probabilistic graphical model for single-objective real-parameter optimization
    Diego Oliva
    Marcella S. R. Martins
    Salvador Hinojosa
    Mohamed Abd Elaziz
    Paulo Victor dos Santos
    Gelson da Cruz
    Seyed Jalaleddin Mousavirad
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 3743 - 3772
  • [16] A Hyper-Heuristic of Scalarizing Functions
    Hernandez Gomez, Raquel
    Coello Coello, Carlos A.
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 577 - 584
  • [17] A Hyper-Heuristic Approach for the PDPTW
    Nasiri, Amir
    Keedwell, Ed
    Dorne, Raphael
    Kern, Mathias
    Owusu, Gilbert
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 196 - 199
  • [18] A Hyper-heuristic Clustering Algorithm
    Tsai, Chun-Wei
    Song, Huei-Jyun
    Chiang, Ming-Chao
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 2839 - 2844
  • [19] A MOPSO based on hyper-heuristic to optimize many-objective problems
    Castro, Olacir R., Jr.
    Pozo, Aurora
    2014 IEEE SYMPOSIUM ON SWARM INTELLIGENCE (SIS), 2014, : 251 - 258
  • [20] A mixture experiments multi-objective hyper-heuristic
    Vazquez-Rodriguez, J. A.
    Petrovic, S.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2013, 64 (11) : 1664 - 1675