Interactive Feature Embedding for Infrared and Visible Image Fusion

被引:8
|
作者
Zhao, Fan [1 ]
Zhao, Wenda [2 ,3 ]
Lu, Huchuan [2 ,3 ]
机构
[1] Liaoning Normal Univ, Sch Phys & Elect Technol, Dalian 116029, Peoples R China
[2] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equipm, Minist Educ, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image fusion; Task analysis; Image reconstruction; Fuses; Self-supervised learning; Data mining; Hierarchical representations; infrared and visible image fusion; interactive feature embedding; self-supervised learning; MULTI-FOCUS; SPARSE REPRESENTATION; SHEARLET TRANSFORM; DECOMPOSITION; ENHANCEMENT; INFORMATION; FRAMEWORK;
D O I
10.1109/TNNLS.2023.3264911
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
General deep learning-based methods for infrared and visible image fusion rely on the unsupervised mechanism for vital information retention by utilizing elaborately designed loss functions. However, the unsupervised mechanism depends on a well-designed loss function, which cannot guarantee that all vital information of source images is sufficiently extracted. In this work, we propose a novel interactive feature embedding in a self-supervised learning framework for infrared and visible image fusion, attempting to overcome the issue of vital information degradation. With the help of a self-supervised learning framework, hierarchical representations of source images can be efficiently extracted. In particular, interactive feature embedding models are tactfully designed to build a bridge between self-supervised learning and infrared and visible image fusion learning, achieving vital information retention. Qualitative and quantitative evaluations exhibit that the proposed method performs favorably against state-of-the-art methods.
引用
收藏
页码:12810 / 12822
页数:13
相关论文
共 50 条
  • [41] Feature-Level Fusion Algorithm of Infrared Image and Visible Image for Object Identification in the Forest
    Yu, Zheng
    Zhang, Yuanyuan
    Ding, Xiaokang
    Zhu, Yuting
    Yan, Lei
    INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL AND AUTOMATION (ICECA 2014), 2014, : 701 - 705
  • [42] Adjustable Visible and Infrared Image Fusion
    Wu, Boxiong
    Nie, Jiangtao
    Wei, Wei
    Zhang, Lei
    Zhang, Yanning
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13463 - 13477
  • [43] RESTORABLE VISIBLE AND INFRARED IMAGE FUSION
    Kang, Jihun
    Horita, Daichi
    Tsubota, Koki
    Aizawa, Kiyoharu
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1560 - 1564
  • [44] FTSFN: A Two-Stage Feature Transfer and Supplement Fusion Network for Infrared and Visible Image Fusion
    Huang, Shuying
    Kong, Xiangkai
    Yang, Yong
    Wan, Weiguo
    Song, Zixiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [45] Infrared and visible image fusion based on a two-stage fusion strategy and feature interaction block
    Chen, Bingxin
    Luo, Shaojuan
    Chen, Meiyun
    Zhang, Fanlong
    He, Chunhua
    Wu, Heng
    OPTICS AND LASERS IN ENGINEERING, 2024, 182
  • [46] Infrared and visible image fusion based on edge-preserving guided filter and infrared feature decomposition
    Ren, Long
    Pan, Zhibin
    Cao, Jianzhong
    Zhang, Hui
    Wang, Hao
    SIGNAL PROCESSING, 2021, 186
  • [47] Dual-Attention-Based Feature Aggregation Network for Infrared and Visible Image Fusion
    Tang, Zhimin
    Xiao, Guobao
    Guo, Junwen
    Wang, Shiping
    Ma, Jiayi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [48] Unified framework based on multiscale transform and feature learning for infrared and visible image fusion
    Fan, Zunlin
    Guan, Naiyang
    Wang, Zhiyuan
    Su, Longfei
    Wu, Jiangang
    Sun, Qianchong
    OPTICAL ENGINEERING, 2021, 60 (12)
  • [49] DBIF: Dual-Branch Feature Extraction Network for Infrared and Visible Image Fusion
    Zhang, Haozhe
    Cui, Rongpu
    Zheng, Zhuohang
    Gao, Shaobing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 309 - 323
  • [50] Infrared and Visible Image Fusion Based on Adaptive Feature Enhancement and Generator Path Interaction
    Yejun, Yang
    Gang, Liu
    Gang, Xiao
    Xinjie, Gu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)