Interactive Feature Embedding for Infrared and Visible Image Fusion

被引:8
|
作者
Zhao, Fan [1 ]
Zhao, Wenda [2 ,3 ]
Lu, Huchuan [2 ,3 ]
机构
[1] Liaoning Normal Univ, Sch Phys & Elect Technol, Dalian 116029, Peoples R China
[2] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equipm, Minist Educ, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image fusion; Task analysis; Image reconstruction; Fuses; Self-supervised learning; Data mining; Hierarchical representations; infrared and visible image fusion; interactive feature embedding; self-supervised learning; MULTI-FOCUS; SPARSE REPRESENTATION; SHEARLET TRANSFORM; DECOMPOSITION; ENHANCEMENT; INFORMATION; FRAMEWORK;
D O I
10.1109/TNNLS.2023.3264911
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
General deep learning-based methods for infrared and visible image fusion rely on the unsupervised mechanism for vital information retention by utilizing elaborately designed loss functions. However, the unsupervised mechanism depends on a well-designed loss function, which cannot guarantee that all vital information of source images is sufficiently extracted. In this work, we propose a novel interactive feature embedding in a self-supervised learning framework for infrared and visible image fusion, attempting to overcome the issue of vital information degradation. With the help of a self-supervised learning framework, hierarchical representations of source images can be efficiently extracted. In particular, interactive feature embedding models are tactfully designed to build a bridge between self-supervised learning and infrared and visible image fusion learning, achieving vital information retention. Qualitative and quantitative evaluations exhibit that the proposed method performs favorably against state-of-the-art methods.
引用
收藏
页码:12810 / 12822
页数:13
相关论文
共 50 条
  • [21] Multiscale feature learning and attention mechanism for infrared and visible image fusion
    Li Gao
    DeLin Luo
    Song Wang
    Science China Technological Sciences, 2024, 67 : 408 - 422
  • [22] Infrared and Visible Images Registration Using Feature and Area for Image Fusion
    Zhang, Xiuqiong
    Qin, Hongyin
    Wang, Mingrong
    Yang, Jian
    FOURTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2011): MACHINE VISION, IMAGE PROCESSING, AND PATTERN ANALYSIS, 2012, 8349
  • [23] FPNFuse: A lightweight feature pyramid network for infrared and visible image fusion
    Zhang, Zi-Han
    Wu, Xiao-Jun
    Xu, Tianyang
    IET IMAGE PROCESSING, 2022, 16 (09) : 2308 - 2320
  • [24] BDPartNet: Feature Decoupling and Reconstruction Fusion Network for Infrared and Visible Image
    Wang, Xuejie
    Zhang, Jianxun
    Tao, Ye
    Yuan, Xiaoli
    Guo, Yifan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 4621 - 4639
  • [25] Self-supervised feature adaption for infrared and visible image fusion
    Zhao, Fan
    Zhao, Wenda
    Yao, Libo
    Liu, Yu
    INFORMATION FUSION, 2021, 76 : 189 - 203
  • [26] Infrared and Visible Image Fusion Based on Innovation Feature Simultaneous Decomposition
    He, Guiqing
    Dong, Dandan
    Xing, Siyuan
    Zhao, Ximei
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1174 - 1177
  • [27] VMDM-fusion: a saliency feature representation method for infrared and visible image fusion
    Yang, Yong
    Liu, Jia-Xiang
    Huang, Shu-Ying
    Lu, Hang-Yuan
    Wen, Wen-Ying
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (06) : 1221 - 1229
  • [28] VMDM-fusion: a saliency feature representation method for infrared and visible image fusion
    Yong Yang
    Jia-Xiang Liu
    Shu-Ying Huang
    Hang-Yuan Lu
    Wen-Ying Wen
    Signal, Image and Video Processing, 2021, 15 : 1221 - 1229
  • [29] Infrared and Visible Image Fusion via Attention-Based Adaptive Feature Fusion
    Wang, Lei
    Hu, Ziming
    Kong, Quan
    Qi, Qian
    Liao, Qing
    ENTROPY, 2023, 25 (03)
  • [30] Infrared and Visible Image Fusion Based on Adversarial Feature Extraction and Stable Image Reconstruction
    Su, Weijian
    Huang, Yongdong
    Li, Qiufu
    Zuo, Fengyuan
    Liu, Lijun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71