Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning

被引:20
|
作者
Wang, Jiping [1 ,2 ]
Tang, Yufei [2 ,3 ]
Wu, Zhongyi [2 ,3 ]
Tsui, Benjamin M. W. [4 ]
Chen, Wei [5 ]
Yang, Xiaodong [2 ]
Zheng, Jian [1 ,2 ,3 ]
Li, Ming [2 ,3 ]
机构
[1] Changchun Univ Sci & Technol, Inst Elect Informat Engn, Changchun, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Med Imaging Dept, Suzhou, Peoples R China
[3] Univ Sci & Technol China, Sch Biomed Engn Suzhou, Div Life Sci & Med, Hefei, Peoples R China
[4] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD 21205 USA
[5] Minfound Med Syst Co Ltd, Shaoxing, Zhejiang, Peoples R China
关键词
deep learning; domain adaptation; LDCT; SPADE; transfer learning; IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; SPARSE-DATA; REDUCTION;
D O I
10.1002/mp.15952
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background In recent years, low-dose computed tomography (LDCT) has played an important role in the diagnosis CT to reduce the potential adverse effects of X-ray radiation on patients, while maintaining the same diagnostic image quality. Purpose Deep learning (DL)-based methods have played an increasingly important role in the field of LDCT imaging. However, its performance is highly dependent on the consistency of feature distributions between training data and test data. Due to patient's breathing movements during data acquisition, the paired LDCT and normal dose CT images are difficult to obtain from realistic imaging scenarios. Moreover, LDCT images from simulation or clinical CT examination often have different feature distributions due to the pollution by different amounts and types of image noises. If a network model trained with a simulated dataset is used to directly test clinical patients' LDCT data, its denoising performance may be degraded. Based on this, we propose a novel domain-adaptive denoising network (DADN) via noise estimation and transfer learning to resolve the out-of-distribution problem in LDCT imaging. Methods To overcome the previous adaptation issue, a novel network model consisting of a reconstruction network and a noise estimation network was designed. The noise estimation network based on a double branch structure is used for image noise extraction and adaptation. Meanwhile, the U-Net-based reconstruction network uses several spatially adaptive normalization modules to fuse multi-scale noise input. Moreover, to facilitate the adaptation of the proposed DADN network to new imaging scenarios, we set a two-stage network training plan. In the first stage, the public simulated dataset is used for training. In the second transfer training stage, we will continue to fine-tune the network model with a torso phantom dataset, while some parameters are frozen. The main reason using the two-stage training scheme is based on the fact that the feature distribution of image content from the public dataset is complex and diverse, whereas the feature distribution of noise pattern from the torso phantom dataset is closer to realistic imaging scenarios. Results In an evaluation study, the trained DADN model is applied to both the public and clinical patient LDCT datasets. Through the comparison of visual inspection and quantitative results, it is shown that the proposed DADN network model can perform well in terms of noise and artifact suppression, while effectively preserving image contrast and details. Conclusions In this paper, we have proposed a new DL network to overcome the domain adaptation problem in LDCT image denoising. Moreover, the results demonstrate the feasibility and effectiveness of the application of our proposed DADN network model as a new DL-based LDCT image denoising method.
引用
收藏
页码:74 / 88
页数:15
相关论文
共 50 条
  • [11] Self-Supervised Dual-Domain Network for Low-dose CT Denoising
    Niu, Chuang
    Li, Mengzhou
    Guo, Xiaodong
    Wang, Ge
    DEVELOPMENTS IN X-RAY TOMOGRAPHY XIV, 2022, 12242
  • [12] Enhancement based convolutional dictionary network with adaptive window for low-dose CT denoising
    Liu, Yi
    Yan, Rongbiao
    Liu, Yuhang
    Zhang, Pengcheng
    Chen, Yang
    Gui, Zhiguo
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2023, 31 (06) : 1165 - 1187
  • [13] Cross-Domain Low-Dose CT Image Denoising With Semantic Preservation and Noise Alignment
    Huang, Jiaxin
    Chen, Kecheng
    Ren, Yazhou
    Sun, Jiayu
    Pu, Xiaorong
    Zhu, Ce
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8771 - 8782
  • [14] Segmentation as Domain Knowledge in GAN for Low-dose CT Denoising
    Yin, Zhi
    Zheng, Zong
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2022, 66 (04)
  • [15] Low-dose CT denoising via convolutional neural network with an observer loss function
    Han, Minah
    Shim, Hyunjung
    Baek, Jongduk
    MEDICAL PHYSICS, 2021, 48 (10) : 5727 - 5742
  • [16] CDDnet: Cross-domain denoising network for low-dose CT image via local and global information alignment
    Huang, Jiaxin
    Chen, Kecheng
    Ren, Yazhou
    Sun, Jiayu
    Wang, Yanmei
    Tao, Tao
    Pu, Xiaorong
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [17] Innovative Noise Extraction and Denoising in Low-Dose CT Using a Supervised Deep Learning Framework
    Zhang, Wei
    Salmi, Abderrahmane
    Yang, Chifu
    Jiang, Feng
    ELECTRONICS, 2024, 13 (16)
  • [18] LOW-DOSE CT DENOISING VIA NEURAL ARCHITECTURE SEARCH
    Lu, Zexin
    Xia, Wenjun
    Huang, Yongqiang
    Hou, Mingzheng
    Chen, Hu
    Shan, Hongming
    Zhang, Yi
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [19] Dual-domain fusion deep convolutional neural network for low-dose CT denoising
    Li, Zhiyuan
    Liu, Yi
    Chen, Yang
    Shu, Huazhong
    Lu, Jing
    Gui, Zhiguo
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2023, 31 (04) : 757 - 775
  • [20] Low-dose CT reconstruction with simultaneous sinogram and image domain denoising by deep neural network
    Zhu, Jiongtao
    Su, Ting
    Deng, Xiaolei
    Sun, Xindong
    Zheng, Hairong
    Liang, Dong
    Ge, Yongshuai
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312