Low-dose CT denoising via convolutional neural network with an observer loss function

被引:22
|
作者
Han, Minah
Shim, Hyunjung
Baek, Jongduk [1 ,2 ]
机构
[1] Yonsei Univ, Sch Integrated Technol, Incheon, South Korea
[2] Yonsei Univ, Yonsei Inst Convergence Technol, Incheon, South Korea
基金
新加坡国家研究基金会;
关键词
convolutional neural netwrok; denoising; low-dose CT; perceptual loss; DETECTABILITY;
D O I
10.1002/mp.15161
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Convolutional neural network (CNN)-based denoising is an effective method for reducing complex computed tomography (CT) noise. However, the image blur induced by denoising processes is a major concern. The main source of image blur is the pixel-level loss (e.g., mean squared error [MSE] and mean absolute error [MAE]) used to train a CNN denoiser. To reduce the image blur, feature-level loss is utilized to train a CNN denoiser. A CNN denoiser trained using visual geometry group (VGG) loss can preserve the small structures, edges, and texture of the image.However, VGG loss, derived from an ImageNet-pretrained image classifier, is not optimal for training a CNN denoiser for CT images. ImageNet contains natural RGB images, so the features extracted by the ImageNet-pretrained model cannot represent the characteristics of CT images that are highly correlated with diagnosis. Furthermore, a CNN denoiser trained with VGG loss causes bias in CT number. Therefore, we propose to use a binary classification network trained using CT images as a feature extractor and newly define the feature-level loss as observer loss. Methods: As obtaining labeled CT images for training classification network is difficult, we create labels by inserting simulated lesions. We conduct two separate classification tasks, signal-known-exactly (SKE) and signal-known-statistically (SKS), and define the corresponding feature-level losses as SKE loss and SKS loss, respectively. We use SKE loss and SKS loss to train CNN denoiser. Results: Compared to pixel-level losses, a CNN denoiser trained using observer loss (i.e., SKE loss and SKS loss) is effective in preserving structure, edge, and texture. Observer loss also resolves the bias in CT number, which is a problem of VGG loss. Comparing observer losses using SKE and SKS tasks, SKS yields images having a more similar noise structure to reference images. Conclusions: Using observer loss for training CNN denoiser is effective to preserve structure, edge, and texture in denoised images and prevent the CT number bias. In particular, when using SKS loss, denoised images having a similar noise structure to reference images are generated.
引用
收藏
页码:5727 / 5742
页数:16
相关论文
共 50 条
  • [1] Low-dose CT denoising via CNN with an observer loss function
    Han, Minah
    Baek, Jongduk
    MEDICAL IMAGING 2021: PHYSICS OF MEDICAL IMAGING, 2021, 11595
  • [2] Low-dose CT count-domain denoising via convolutional neural network with filter loss
    Yuan, Nimu
    Zhou, Jian
    Gong, Kuang
    Qi, Jinyi
    MEDICAL IMAGING 2019: PHYSICS OF MEDICAL IMAGING, 2019, 10948
  • [3] Image Denoising for Low-Dose CT via Convolutional Dictionary Learning and Neural Network
    Yan, Rongbiao
    Liu, Yi
    Liu, Yuhang
    Wang, Lei
    Zhao, Rongge
    Bai, Yunjiao
    Gui, Zhiguo
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2023, 9 : 83 - 93
  • [4] Low-dose CT via convolutional neural network
    Chen, Hu
    Zhang, Yi
    Zhang, Weihua
    Liao, Peixi
    Li, Ke
    Zhou, Jiliu
    Wang, Ge
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02): : 679 - 694
  • [5] LOW-DOSE CT DENOISING WITH CONVOLUTIONAL NEUELA NETWORK
    Chen, Hu
    Zhang, Yi
    Zhang, Weihua
    Liao, Peixi
    Li, Ke
    Zhou, Jiliu
    Wang, Ge
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 143 - 146
  • [6] Low-Dose CT Image Denoising Method Based on Convolutional Neural Network
    Zhang Yungang
    Yi Benshun
    Wu Chenyue
    Feng Yu
    ACTA OPTICA SINICA, 2018, 38 (04)
  • [7] An adaptive self-guided wavelet convolutional neural network with compound loss for low-dose CT denoising
    Li, Saize
    Li, Qing
    Li, Runrui
    Wu, Wei
    Zhao, Juanjuan
    Qiang, Yan
    Tian, Yuling
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
  • [8] Low-dose CT image denoising using residual convolutional network with fractional TV loss
    Chen, Miao
    Pu, Yi-Fei
    Bai, Yu-Cai
    NEUROCOMPUTING, 2021, 452 : 510 - 520
  • [9] SDCNN: Self-Supervised Disentangled Convolutional Neural Network for Low-Dose CT Denoising
    Liu, Yuhang
    Shu, Huazhong
    Chi, Qiang
    Zhang, Yue
    Liu, Zidong
    Wu, Fuzhi
    Coatrieux, Jean-Louis
    Liu, Yi
    Wang, Lei
    Zhang, Pengcheng
    Gui, Zhiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [10] Dual-domain fusion deep convolutional neural network for low-dose CT denoising
    Li, Zhiyuan
    Liu, Yi
    Chen, Yang
    Shu, Huazhong
    Lu, Jing
    Gui, Zhiguo
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2023, 31 (04) : 757 - 775