Low-dose CT denoising via convolutional neural network with an observer loss function

被引:22
|
作者
Han, Minah
Shim, Hyunjung
Baek, Jongduk [1 ,2 ]
机构
[1] Yonsei Univ, Sch Integrated Technol, Incheon, South Korea
[2] Yonsei Univ, Yonsei Inst Convergence Technol, Incheon, South Korea
基金
新加坡国家研究基金会;
关键词
convolutional neural netwrok; denoising; low-dose CT; perceptual loss; DETECTABILITY;
D O I
10.1002/mp.15161
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Convolutional neural network (CNN)-based denoising is an effective method for reducing complex computed tomography (CT) noise. However, the image blur induced by denoising processes is a major concern. The main source of image blur is the pixel-level loss (e.g., mean squared error [MSE] and mean absolute error [MAE]) used to train a CNN denoiser. To reduce the image blur, feature-level loss is utilized to train a CNN denoiser. A CNN denoiser trained using visual geometry group (VGG) loss can preserve the small structures, edges, and texture of the image.However, VGG loss, derived from an ImageNet-pretrained image classifier, is not optimal for training a CNN denoiser for CT images. ImageNet contains natural RGB images, so the features extracted by the ImageNet-pretrained model cannot represent the characteristics of CT images that are highly correlated with diagnosis. Furthermore, a CNN denoiser trained with VGG loss causes bias in CT number. Therefore, we propose to use a binary classification network trained using CT images as a feature extractor and newly define the feature-level loss as observer loss. Methods: As obtaining labeled CT images for training classification network is difficult, we create labels by inserting simulated lesions. We conduct two separate classification tasks, signal-known-exactly (SKE) and signal-known-statistically (SKS), and define the corresponding feature-level losses as SKE loss and SKS loss, respectively. We use SKE loss and SKS loss to train CNN denoiser. Results: Compared to pixel-level losses, a CNN denoiser trained using observer loss (i.e., SKE loss and SKS loss) is effective in preserving structure, edge, and texture. Observer loss also resolves the bias in CT number, which is a problem of VGG loss. Comparing observer losses using SKE and SKS tasks, SKS yields images having a more similar noise structure to reference images. Conclusions: Using observer loss for training CNN denoiser is effective to preserve structure, edge, and texture in denoised images and prevent the CT number bias. In particular, when using SKS loss, denoised images having a similar noise structure to reference images are generated.
引用
收藏
页码:5727 / 5742
页数:16
相关论文
共 50 条
  • [21] Low-Dose CT Image Denoising with a Residual Multi-scale Feature Fusion Convolutional Neural Network and Enhanced Perceptual Loss
    Mazandarani, Farzan Niknejad
    Babyn, Paul
    Alirezaie, Javad
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (04) : 2533 - 2559
  • [22] Low-Dose CT Image Denoising with a Residual Multi-scale Feature Fusion Convolutional Neural Network and Enhanced Perceptual Loss
    Farzan Niknejad Mazandarani
    Paul Babyn
    Javad Alirezaie
    Circuits, Systems, and Signal Processing, 2024, 43 : 2533 - 2559
  • [23] Improving Low-Dose Cone Beam CT Image Quality Via Convolutional Neural Network
    Yuan, N.
    Rao, S.
    Dyer, B.
    Benedict, S.
    Kang, Y.
    Qi, J.
    Rong, Y.
    MEDICAL PHYSICS, 2019, 46 (06) : E221 - E221
  • [24] Performance comparison of convolutional neural network based denoising in low dose CT images for various loss functions
    Kim, Byeongjoon
    Han, Minah
    Shim, Hyunjung
    Baek, Jongduk
    MEDICAL IMAGING 2019: PHYSICS OF MEDICAL IMAGING, 2019, 10948
  • [25] Low-Dose CT Image Denoising with Improving WGAN and Hybrid Loss Function
    Li, Zhihua
    Shi, Weili
    Xing, Qiwei
    Miao, Yu
    He, Wei
    Yang, Huamin
    Jiang, Zhengang
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [26] Enhancement based convolutional dictionary network with adaptive window for low-dose CT denoising
    Liu, Yi
    Yan, Rongbiao
    Liu, Yuhang
    Zhang, Pengcheng
    Chen, Yang
    Gui, Zhiguo
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2023, 31 (06) : 1165 - 1187
  • [27] A convolutional neural network for ultra-low-dose CT denoising and emphysema screening
    Zhao, Tingting
    McNitt-Gray, Michael
    Ruan, Dan
    MEDICAL PHYSICS, 2019, 46 (09) : 3941 - 3950
  • [28] 3D Residual Convolutional Neural Network for Low Dose CT Denoising
    Zamyatin, Alex
    Yu, Leiming
    Rozas, David
    MEDICAL IMAGING 2022: PHYSICS OF MEDICAL IMAGING, 2022, 12031
  • [29] Low-dose CT Denoising with Dilated Residual Network
    Gholizadeh-Ansari, Maryam
    Alirezaie, Javad
    Babyn, Paul
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5117 - 5120
  • [30] Low-Dose CT Image Denoising Using a Generative Adversarial Network With a Hybrid Loss Function for Noise Learning
    Ma, Yinjin
    Wei, Biao
    Feng, Peng
    He, Peng
    Guo, Xiaodong
    Wang, Ge
    IEEE ACCESS, 2020, 8 (08): : 67519 - 67529