Multi-qubit quantum computing using discrete-time quantum walks on closed graphs

被引:5
|
作者
Chawla, Prateek [1 ,2 ]
Singh, Shivani [1 ,5 ]
Agarwal, Aman [1 ,3 ]
Srinivasan, Sarvesh [1 ,4 ]
Chandrashekar, C. M. [1 ,2 ,6 ]
机构
[1] Inst Math Sci, CIT Campus, Chennai 600113, India
[2] Homi Bhabha Natl Inst, Training Sch Complex,Anushakti Nagar, Mumbai 400094, India
[3] BITS Pilani, K K BIrla Goa Campus,NH17B,Bypass Rd, Zuarinagar 403726, Goa, India
[4] Birla Inst Technol & Sci, Pilani Campus, Pilani 333031, India
[5] Czech Tech Univ, FNSPE, Brehova 7, Prague 1, Czech Republic
[6] Indian Inst Sci, Dept Instrumentat & Appl Phys, Quantum Opt & Quantum Informat, Bengaluru, India
关键词
ULTRACOLD ATOMS; COMPUTATION; DIAMOND;
D O I
10.1038/s41598-023-39061-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Universal quantum computation can be realised using both continuous-time and discrete-time quantum walks. We present a version based on single particle discrete-time quantum walk to realize multi-qubit computation tasks. The scalability of the scheme is demonstrated by using a set of walk operations on a closed lattice form to implement the universal set of quantum gates on multi-qubit system. We also present a set of experimentally realizable walk operations that can implement Grover's algorithm, quantum Fourier transformation and quantum phase estimation algorithms. An elementary implementation of error detection and correction is also presented. Analysis of space and time complexity of the scheme highlights the advantages of quantum walk based model for quantum computation on systems where implementation of quantum walk evolution operations is an inherent feature of the system.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Rogue waves in discrete-time quantum walks
    Buarque, A. R. C.
    Dias, W. S.
    de Moura, F. A. B. F.
    Lyra, M. L.
    Almeida, G. M. A.
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [32] Discrete-time quantum walks and graph structures
    Godsil, Chris
    Zhan, Hanmeng
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 167 : 181 - 212
  • [33] Discrete-time semiclassical Szegedy quantum walks
    Ortega, Sergio A.
    Martin-Delgado, Miguel A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 625
  • [34] Projection Theorem for Discrete-Time Quantum Walks
    Potocek, Vaclav
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2020, (315): : 48 - 58
  • [35] Group velocity of discrete-time quantum walks
    Kempf, A.
    Portugal, R.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [36] Crossovers induced by discrete-time quantum walks
    Chisaki, Kota
    Konno, Norio
    Segawa, Etsuo
    Sikano, Yutaka
    Quantum Information and Computation, 2011, 11 (9-10): : 741 - 760
  • [37] Topology and Holonomy in Discrete-time Quantum Walks
    Puentes, Graciana
    CRYSTALS, 2017, 7 (05):
  • [38] A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks
    Heng-Ji Li
    Xiu-Bo Chen
    Ya-Lan Wang
    Yan-Yan Hou
    Jian Li
    Quantum Information Processing, 2019, 18
  • [39] A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks
    Li, Heng-Ji
    Chen, Xiu-Bo
    Wang, Ya-Lan
    Hou, Yan-Yan
    Li, Jian
    QUANTUM INFORMATION PROCESSING, 2019, 18 (09)
  • [40] Multi-qubit correction for quantum annealers
    Ramin Ayanzadeh
    John Dorband
    Milton Halem
    Tim Finin
    Scientific Reports, 11