Multi-qubit quantum computing using discrete-time quantum walks on closed graphs

被引:5
|
作者
Chawla, Prateek [1 ,2 ]
Singh, Shivani [1 ,5 ]
Agarwal, Aman [1 ,3 ]
Srinivasan, Sarvesh [1 ,4 ]
Chandrashekar, C. M. [1 ,2 ,6 ]
机构
[1] Inst Math Sci, CIT Campus, Chennai 600113, India
[2] Homi Bhabha Natl Inst, Training Sch Complex,Anushakti Nagar, Mumbai 400094, India
[3] BITS Pilani, K K BIrla Goa Campus,NH17B,Bypass Rd, Zuarinagar 403726, Goa, India
[4] Birla Inst Technol & Sci, Pilani Campus, Pilani 333031, India
[5] Czech Tech Univ, FNSPE, Brehova 7, Prague 1, Czech Republic
[6] Indian Inst Sci, Dept Instrumentat & Appl Phys, Quantum Opt & Quantum Informat, Bengaluru, India
关键词
ULTRACOLD ATOMS; COMPUTATION; DIAMOND;
D O I
10.1038/s41598-023-39061-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Universal quantum computation can be realised using both continuous-time and discrete-time quantum walks. We present a version based on single particle discrete-time quantum walk to realize multi-qubit computation tasks. The scalability of the scheme is demonstrated by using a set of walk operations on a closed lattice form to implement the universal set of quantum gates on multi-qubit system. We also present a set of experimentally realizable walk operations that can implement Grover's algorithm, quantum Fourier transformation and quantum phase estimation algorithms. An elementary implementation of error detection and correction is also presented. Analysis of space and time complexity of the scheme highlights the advantages of quantum walk based model for quantum computation on systems where implementation of quantum walk evolution operations is an inherent feature of the system.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Simple hash function using discrete-time quantum walks
    Yu-Guang Yang
    Jing-Lin Bi
    Xiu-Bo Chen
    Zheng Yuan
    Yi-Hua Zhou
    Wei-Min Shi
    Quantum Information Processing, 2018, 17
  • [22] Borromean states in discrete-time quantum walks
    Markiewicz, Marcin
    Karczewski, Marcin
    Kurzynski, Pawel
    QUANTUM, 2021, 5
  • [24] Scattering theory and discrete-time quantum walks
    Feldman, E
    Hillery, M
    PHYSICS LETTERS A, 2004, 324 (04) : 277 - 281
  • [25] Photonic Discrete-time Quantum Walks and Applications
    Neves, Leonardo
    Puentes, Graciana
    ENTROPY, 2018, 20 (10):
  • [26] ENTANGLEMENT FOR DISCRETE-TIME QUANTUM WALKS ON THE LINE
    Ide, Yusuke
    Konno, Norio
    Machida, Takuya
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (9-10) : 855 - 866
  • [27] Photonic discrete-time quantum walks [Invited]
    Zhu, Gaoyan
    Xiao, Lei
    Huo, Bingzi
    Xue, Peng
    CHINESE OPTICS LETTERS, 2020, 18 (05)
  • [28] CROSSOVERS INDUCED BY DISCRETE-TIME QUANTUM WALKS
    Chisaki, Kota
    Konno, Norio
    Segawa, Etsuo
    Shikano, Yutaka
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (9-10) : 741 - 760
  • [29] Discrete-time quantum walks in qudit systems
    Saha, Amit
    Saha, Debasri
    Chakrabarti, Amlan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (11):
  • [30] Photonic discrete-time quantum walks [Invited]
    朱高岩
    肖磊
    霍丙子
    薛鹏
    ChineseOpticsLetters, 2020, 18 (05) : 82 - 95