Thermal management of a prismatic lithium battery pack with organic phase change material

被引:8
|
作者
Alqaed, Saeed [1 ]
Mustafa, Jawed [1 ,5 ]
Almehmadi, Fahad Awjah [2 ]
Sharifpur, Mohsen [3 ,4 ,6 ]
机构
[1] Najran Univ, Coll Engn, Mech Engn Dept, POB 1988, Najran 61441, Saudi Arabia
[2] King Saud Univ, Coll Appl Engn, Dept Appl Mech Engn, Muzahimiyah Branch, POB 800, Riyadh 11421, Saudi Arabia
[3] Univ Pretoria, Dept Mech & Aeronaut Engn, Pretoria, South Africa
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Najran Univ, Coll Engn, Mech Engn Dept, Najran, Saudi Arabia
[6] Univ Pretoria, Dept Mech & Aeronaut Engn, Pretoria, South Africa
关键词
Inlet and outlet position; Air-cooled; PCM; Lithium -ion battery;
D O I
10.1016/j.jtice.2023.104886
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Background: This article examines a T-shaped lithium-ion battery pack (BPC) consisting of six prismatic cells using the finite element method (FEM). An optimal model is introduced for batteries' thermal management (THMT) by changing the position of the inlets and outlets. Methods: The outlet is where the fully developed airflow leaves, and the walls use the no-slip boundary condition. The batteries are placed in an enclosure filled with phase change material (PCM) to create temperature uniformity on the batteries. The hydrodynamic and thermal modeling of airflow and the melting and freezing of PCM are performed in this study using the COMSOL program. Significant findings: The results demonstrate that the batteries' maximum temperature (TMX) changes by changing the location of the inlets. Changing the position of inlets also affects the melting and freezing of the PCM, and better temperature uniformity on the batteries may be achieved using some models. The M4 model, in which the inlet and outlet are on the left and right sides, and an outlet is in the center, is the most appropriate model for industrial applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Thermal management optimization strategy for lithium-ion battery based on phase change material and fractal fin
    Li, Wei
    Zhao, Jinyu
    Zhang, Lu
    Wang, Jing
    Zhang, Xu
    Zhu, Yuwen
    Zhao, Jun
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [42] A pourable, thermally conductive and electronic insulated phase change material for thermal management of lithium-ion battery
    Niu, Junyi
    Yuan, Wenhui
    Zhang, Zhengguo
    Gao, Xuenong
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [43] Thermal management performance of a fin-enhanced phase change material system for the lithium-ion battery
    Zheng Nianben
    Fan Ruijin
    Sun Zhiqiang
    Zhou Tian
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (09) : 7617 - 7629
  • [44] Experimental investigation on hydrated salt phase change material for lithium-ion battery thermal management and thermal runaway mitigation
    Zhi, Maoyong
    Fan, Rong
    Zheng, Lingling
    Yue, Shan
    Pan, Zhiheng
    Sun, Qiang
    Liu, Quanyi
    ENERGY, 2024, 307
  • [45] Thermal Management of Lithium-ion Battery Pack with Liquid Cooling
    Saw, L. H.
    Tay, A. A. O.
    Zhang, L. Winston
    2015 31ST ANNUAL SEMICONDUCTOR THERMAL MEASUREMENT, MODELING & MANAGEMENT SYMPOSIUM (SEMI-THERM), 2015, : 298 - 302
  • [46] Thermal performance of thermal management system coupling composite phase change material to water cooling with double s-shaped micro-channels for prismatic lithium-ion battery
    Gao, Zhengyuan
    Deng, Fang
    Yan, Dong
    Zhu, Hui
    An, Zhiguo
    Sun, Pengfei
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [47] Phase change material with outstanding thermal stability and mechanical strength for battery thermal management
    Chen, Mingyi
    Gong, Yan
    Zhao, Luyao
    Chen, Yin
    JOURNAL OF ENERGY STORAGE, 2024, 104
  • [48] Analytical modeling and optimization of phase change thermal management of a Li-ion battery pack
    Parhizi, Mohammad
    Jain, Ankur
    APPLIED THERMAL ENGINEERING, 2019, 148 : 229 - 237
  • [49] Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials
    Huang, Qiqiu
    Li, Xinxi
    Zhang, Guoqing
    Deng, Jian
    Wang, Changhong
    APPLIED THERMAL ENGINEERING, 2021, 183
  • [50] Research on the performance failure of phase change materials thermal management for lithium battery
    Lin, Shi
    Zhou, Liqun
    APPLIED THERMAL ENGINEERING, 2024, 244