An improved spatial temporal graph convolutional network for robust skeleton-based action recognition

被引:14
|
作者
Xing, Yuling [1 ]
Zhu, Jia [2 ]
Li, Yu [1 ]
Huang, Jin [1 ]
Song, Jinlong [1 ]
机构
[1] South China Normal Univ, 55 Zhongshan Ave West, Guangzhou, Peoples R China
[2] Zhejiang Normal Univ, Key Lab Intelligent Educ Technol & Applicat Zheji, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Adaptive graph; Multi-scale; Occlusion and noise;
D O I
10.1007/s10489-022-03589-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition methods using complete human skeletons have achieved remarkable performance, but the performance of these methods could significantly deteriorate when critical joints or frames of the skeleton sequence are occluded or disrupted. However, the acquisition of incomplete and noisy human skeletons is inevitable in realistic environments. In order to strengthen the robustness of action recognition model, we propose an Improved Spatial Temporal Graph Convolutional Network (IST-GCN) model, including three modules, namely Multi-dimension Adaptive Graph Convolutional Network (Md-AGCN), Enhanced Attention Mechanism (EAM) and Multi-Scale Temporal Convolutional Network (MS-TCN). Specifically, the Md-AGCN module can first adaptively adjust the graph structure according to different layers and the spatial dimension, temporal dimension, and channel dimension of different action samples to establish corresponding connections for long-range joints with dependencies. Then, the EAM module can focus on important information based on spatial domain, temporal domain and channel to further strengthen the dependencies between important joints. Finally, the MS-TCN module is used to enlarge the receptive field to extract more latent temporal dependencies. The comprehensive experiments on NTU-RGB+D and NTU-RGB+D 120 datasets demonstrate that our approach possesses outstanding performance in terms of both accuracy and robustness when skeleton samples are incomplete and noisy compared with the state-of-the-art (SOTA) approach. Moreover, the parameters and computational complexity of our model are far less than those of the existing approaches.
引用
收藏
页码:4592 / 4608
页数:17
相关论文
共 50 条
  • [41] Predictively encoded graph convolutional network for noise-robust skeleton-based action recognition
    Yoon, Yongsang
    Yu, Jongmin
    Jeon, Moongu
    APPLIED INTELLIGENCE, 2022, 52 (03) : 2317 - 2331
  • [42] Feature reconstruction graph convolutional network for skeleton-based action recognition
    Huang, Junhao
    Wang, Ziming
    Peng, Jian
    Huang, Feihu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [43] Predictively encoded graph convolutional network for noise-robust skeleton-based action recognition
    Yongsang Yoon
    Jongmin Yu
    Moongu Jeon
    Applied Intelligence, 2022, 52 : 2317 - 2331
  • [44] EchoGCN: An Echo Graph Convolutional Network for Skeleton-Based Action Recognition
    Qian, Weiwen
    Huang, Qian
    Li, Chang
    Chen, Zhongqi
    Mao, Yingchi
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), (245-261):
  • [45] Pyramidal Graph Convolutional Network for Skeleton-Based Human Action Recognition
    Li, Fanjia
    Zhu, Aichun
    Liu, Zhongyu
    Huo, Yu
    Xu, Yonggang
    Hua, Gang
    IEEE SENSORS JOURNAL, 2021, 21 (14) : 16183 - 16191
  • [46] Pose Refinement Graph Convolutional Network for Skeleton-Based Action Recognition
    Li, Shijie
    Yi, Jinhui
    Abu Farha, Yazan
    Gall, Juergen
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 1028 - 1035
  • [47] Spatial Residual Layer and Dense Connection Block Enhanced Spatial Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
    Wu, Cong
    Wu, Xiao-Jun
    Kittler, Josef
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 1740 - 1748
  • [48] Enhanced discriminative graph convolutional network with adaptive temporal modelling for skeleton-based action recognition
    Alsarhan, Tamam
    Ali, Usman
    Lu, Hongtao
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 216
  • [49] Lightweight Multiscale Spatio-Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
    Zheng, Zhiyun
    Yuan, Qilong
    Zhang, Huaizhu
    Wang, Yizhou
    Wang, Junfeng
    BIG DATA MINING AND ANALYTICS, 2025, 8 (02): : 310 - 325
  • [50] PROGRESSIVE SPATIO-TEMPORAL GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED HUMAN ACTION RECOGNITION
    Heidari, Negar
    Iosifidis, Alexandros
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3220 - 3224