An improved spatial temporal graph convolutional network for robust skeleton-based action recognition

被引:14
|
作者
Xing, Yuling [1 ]
Zhu, Jia [2 ]
Li, Yu [1 ]
Huang, Jin [1 ]
Song, Jinlong [1 ]
机构
[1] South China Normal Univ, 55 Zhongshan Ave West, Guangzhou, Peoples R China
[2] Zhejiang Normal Univ, Key Lab Intelligent Educ Technol & Applicat Zheji, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Adaptive graph; Multi-scale; Occlusion and noise;
D O I
10.1007/s10489-022-03589-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition methods using complete human skeletons have achieved remarkable performance, but the performance of these methods could significantly deteriorate when critical joints or frames of the skeleton sequence are occluded or disrupted. However, the acquisition of incomplete and noisy human skeletons is inevitable in realistic environments. In order to strengthen the robustness of action recognition model, we propose an Improved Spatial Temporal Graph Convolutional Network (IST-GCN) model, including three modules, namely Multi-dimension Adaptive Graph Convolutional Network (Md-AGCN), Enhanced Attention Mechanism (EAM) and Multi-Scale Temporal Convolutional Network (MS-TCN). Specifically, the Md-AGCN module can first adaptively adjust the graph structure according to different layers and the spatial dimension, temporal dimension, and channel dimension of different action samples to establish corresponding connections for long-range joints with dependencies. Then, the EAM module can focus on important information based on spatial domain, temporal domain and channel to further strengthen the dependencies between important joints. Finally, the MS-TCN module is used to enlarge the receptive field to extract more latent temporal dependencies. The comprehensive experiments on NTU-RGB+D and NTU-RGB+D 120 datasets demonstrate that our approach possesses outstanding performance in terms of both accuracy and robustness when skeleton samples are incomplete and noisy compared with the state-of-the-art (SOTA) approach. Moreover, the parameters and computational complexity of our model are far less than those of the existing approaches.
引用
收藏
页码:4592 / 4608
页数:17
相关论文
共 50 条
  • [31] Skeleton-Based Action Recognition with Improved Graph Convolution Network
    Yang, Xuqi
    Zhang, Jia
    Qin, Rong
    Su, Yunyu
    Qiu, Shuting
    Yu, Jintian
    Ge, Yongxin
    BIOMETRIC RECOGNITION (CCBR 2021), 2021, 12878 : 31 - 38
  • [32] Spatial-Temporal gated graph attention network for skeleton-based action recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 929 - 939
  • [33] Spatial-Temporal Dynamic Graph Attention Network for Skeleton-Based Action Recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    Saba, Tanzila
    Rehman, Amjad
    Bahaj, Saeed Ali
    IEEE ACCESS, 2023, 11 : 21546 - 21553
  • [34] Temporal Decoupling Graph Convolutional Network for Skeleton-Based Gesture Recognition
    Liu, Jinfu
    Wang, Xinshun
    Wang, Can
    Gao, Yuan
    Liu, Mengyuan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 811 - 823
  • [35] Dynamic spatial-temporal topology graph network for skeleton-based action recognition
    Chen, Lian
    Lu, Ke
    Niu, Zehai
    Wei, Runchen
    Xue, Jian
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [36] Multilevel Spatial-Temporal Excited Graph Network for Skeleton-Based Action Recognition
    Zhu, Yisheng
    Shuai, Hui
    Liu, Guangcan
    Liu, Qingshan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 496 - 508
  • [37] Relation Selective Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Wenjie
    Zhang, Jianlin
    Cai, Jingju
    Xu, Zhiyong
    SYMMETRY-BASEL, 2021, 13 (12):
  • [38] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [39] Selective directed graph convolutional network for skeleton-based action recognition
    Ke, Chengyuan
    Liu, Sheng
    Feng, Yuan
    Chen, Shengyong
    PATTERN RECOGNITION LETTERS, 2025, 190 : 141 - 146
  • [40] Scale Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Wang X.
    Zhong Y.
    Jin L.
    Xiao Y.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (03): : 306 - 312