An improved spatial temporal graph convolutional network for robust skeleton-based action recognition

被引:14
|
作者
Xing, Yuling [1 ]
Zhu, Jia [2 ]
Li, Yu [1 ]
Huang, Jin [1 ]
Song, Jinlong [1 ]
机构
[1] South China Normal Univ, 55 Zhongshan Ave West, Guangzhou, Peoples R China
[2] Zhejiang Normal Univ, Key Lab Intelligent Educ Technol & Applicat Zheji, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Adaptive graph; Multi-scale; Occlusion and noise;
D O I
10.1007/s10489-022-03589-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition methods using complete human skeletons have achieved remarkable performance, but the performance of these methods could significantly deteriorate when critical joints or frames of the skeleton sequence are occluded or disrupted. However, the acquisition of incomplete and noisy human skeletons is inevitable in realistic environments. In order to strengthen the robustness of action recognition model, we propose an Improved Spatial Temporal Graph Convolutional Network (IST-GCN) model, including three modules, namely Multi-dimension Adaptive Graph Convolutional Network (Md-AGCN), Enhanced Attention Mechanism (EAM) and Multi-Scale Temporal Convolutional Network (MS-TCN). Specifically, the Md-AGCN module can first adaptively adjust the graph structure according to different layers and the spatial dimension, temporal dimension, and channel dimension of different action samples to establish corresponding connections for long-range joints with dependencies. Then, the EAM module can focus on important information based on spatial domain, temporal domain and channel to further strengthen the dependencies between important joints. Finally, the MS-TCN module is used to enlarge the receptive field to extract more latent temporal dependencies. The comprehensive experiments on NTU-RGB+D and NTU-RGB+D 120 datasets demonstrate that our approach possesses outstanding performance in terms of both accuracy and robustness when skeleton samples are incomplete and noisy compared with the state-of-the-art (SOTA) approach. Moreover, the parameters and computational complexity of our model are far less than those of the existing approaches.
引用
收藏
页码:4592 / 4608
页数:17
相关论文
共 50 条
  • [1] An improved spatial temporal graph convolutional network for robust skeleton-based action recognition
    Yuling Xing
    Jia Zhu
    Yu Li
    Jin Huang
    Jinlong Song
    Applied Intelligence, 2023, 53 : 4592 - 4608
  • [2] Spatial Graph Convolutional and Temporal Involution Network for Skeleton-based Action Recognition
    Wan, Huifan
    Pan, Guanghui
    Chen, Yu
    Ding, Danni
    Zou, Maoyang
    PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 204 - 209
  • [3] Spatial-temporal slowfast graph convolutional network for skeleton-based action recognition
    Fang, Zheng
    Zhang, Xiongwei
    Cao, Tieyong
    Zheng, Yunfei
    Sun, Meng
    IET COMPUTER VISION, 2022, 16 (03) : 205 - 217
  • [4] Spatial-Temporal Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Hang, Rui
    Li, MinXian
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 172 - 188
  • [5] Enhanced Spatial and Extended Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
    Li, Fanjia
    Li, Juanjuan
    Zhu, Aichun
    Xu, Yonggang
    Yin, Hongsheng
    Hua, Gang
    SENSORS, 2020, 20 (18) : 1 - 19
  • [6] Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
    Yan, Sijie
    Xiong, Yuanjun
    Lin, Dahua
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 7444 - 7452
  • [7] Temporal Refinement Graph Convolutional Network for Skeleton-Based Action Recognition
    Zhuang T.
    Qin Z.
    Ding Y.
    Deng F.
    Chen L.
    Qin Z.
    Raymond Choo K.-K.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (04): : 1586 - 1598
  • [8] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Zhu, Qilin
    Deng, Hongmin
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17796 - 17808
  • [9] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Qilin Zhu
    Hongmin Deng
    Applied Intelligence, 2023, 53 : 17796 - 17808
  • [10] Multi-Scale Spatial Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
    Chen, Zhan
    Li, Sicheng
    Yang, Bing
    Li, Qinghan
    LiU, Hong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1113 - 1122