Influence of AVC and HEVC Compression on Detection of Vehicles Through Faster R-CNN

被引:6
|
作者
Chan, Pak Hung [1 ]
Huggett, Anthony [2 ]
Souvalioti, Georgina [1 ]
Jennings, Paul [1 ]
Donzella, Valentina [1 ]
机构
[1] Univ Warwick, Warwick Mfg Grp WMG, Coventry CV4 7AL, England
[2] Onsemi, Bracknell RG12 2AA, England
关键词
Compression; perception sensor; camera; deep neural network; transfer learning; intelligent vehicles; ADAS;
D O I
10.1109/TITS.2023.3308344
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Situational awareness based on the data collected by the vehicle perception sensors (i.e. LiDAR, RADAR, camera and ultrasonic sensors) is key for achieving assisted and automated driving functions in a safe and reliable way. However, the data rates generated by the sensor suite are difficult to support over traditional wired data communication networks on the vehicle, hence there is an interest in techniques that reduce the amount of sensor data to be transmitted without losing key information or introducing unacceptable delays. These techniques must be analysed in combination with the consumer of the data, which will most likely be a machine learning algorithm based on deep neural networks (DNNs). In this paper we demonstrate that by compression tuning the DNNs (i.e. transfer learning by re-training with compressed data) the DNN average precision and recall can significantly improve when uncompressed and compressed data are transmitted. This improvement is achieved independently from the compression standard used for compression-training (i.e. AVC and HEVC), and also when training and transmitted data use the same compression standard or different compression standards. Furthermore, the performance of the DNNs is stable when transmitting data with increasing lossy compression rate, up to a compression ratio of approximately 160:1; above this value the performance starts to degrade. This work paves the way for the use of compressed sensor data in automated driving in combination with the optimisation of compression-tuned DNNs.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 50 条
  • [41] Roadside Traffic Sign Detection Based on Faster R-CNN
    Fu, Xingyu
    Fang, Bin
    Qian, Jiye
    Wu, Zhenni
    Zhu, Jiajie
    Du, Tongxin
    ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 439 - 444
  • [42] p-Faster R-CNN Algorithm for Food Detection
    Wan, Yanchen
    Liu, Yu
    Li, Yuan
    Zhang, Puhong
    COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2017, 2018, 252 : 132 - 142
  • [43] Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images
    Sahin, M. Emin
    Ulutas, Hasan
    Yuce, Esra
    Erkoc, Mustafa Fatih
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (18): : 13597 - 13611
  • [44] A CLOSER LOOK: SMALL OBJECT DETECTION IN FASTER R-CNN
    Eggert, Christian
    Brehm, Stephan
    Winschel, Anton
    Zecha, Dan
    Lienhart, Rainer
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 421 - 426
  • [45] Cigarette Detection Algorithm Based on Improved Faster R-CNN
    Han, Guijin
    Li, Qian
    Zhou, You
    He, Yue
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2766 - 2770
  • [46] Real-time smoke detection with Faster R-CNN
    Li, Lei
    Liu, Fenggang
    Ding, Yidan
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [47] Feature Optimization for Pedestrian Detection based on Faster R-CNN
    Ren, Mengxue
    Lu, Shuhua
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [48] Gas mask wearing detection based on Faster R-CNN
    Wang, Bangrong
    Wang, Jun
    Xu, Xiaofeng
    Bao, Xianglin
    JOURNAL OF AMBIENT INTELLIGENCE AND SMART ENVIRONMENTS, 2023, 16 (01) : 57 - 71
  • [49] Inshore ship detection based on improved Faster R-CNN
    Tan, Xiangyu
    Tian, Tian
    Li, Hang
    MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2020, 11429
  • [50] Faster R-CNN Approach for Diabetic Foot Ulcer Detection
    da Costa Oliveira, Artur Leandro
    de Carvalho, Andre Britto
    Dantas, Daniel Oliveira
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 4: VISAPP, 2021, : 677 - 684