Influence of AVC and HEVC Compression on Detection of Vehicles Through Faster R-CNN

被引:6
|
作者
Chan, Pak Hung [1 ]
Huggett, Anthony [2 ]
Souvalioti, Georgina [1 ]
Jennings, Paul [1 ]
Donzella, Valentina [1 ]
机构
[1] Univ Warwick, Warwick Mfg Grp WMG, Coventry CV4 7AL, England
[2] Onsemi, Bracknell RG12 2AA, England
关键词
Compression; perception sensor; camera; deep neural network; transfer learning; intelligent vehicles; ADAS;
D O I
10.1109/TITS.2023.3308344
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Situational awareness based on the data collected by the vehicle perception sensors (i.e. LiDAR, RADAR, camera and ultrasonic sensors) is key for achieving assisted and automated driving functions in a safe and reliable way. However, the data rates generated by the sensor suite are difficult to support over traditional wired data communication networks on the vehicle, hence there is an interest in techniques that reduce the amount of sensor data to be transmitted without losing key information or introducing unacceptable delays. These techniques must be analysed in combination with the consumer of the data, which will most likely be a machine learning algorithm based on deep neural networks (DNNs). In this paper we demonstrate that by compression tuning the DNNs (i.e. transfer learning by re-training with compressed data) the DNN average precision and recall can significantly improve when uncompressed and compressed data are transmitted. This improvement is achieved independently from the compression standard used for compression-training (i.e. AVC and HEVC), and also when training and transmitted data use the same compression standard or different compression standards. Furthermore, the performance of the DNNs is stable when transmitting data with increasing lossy compression rate, up to a compression ratio of approximately 160:1; above this value the performance starts to degrade. This work paves the way for the use of compressed sensor data in automated driving in combination with the optimisation of compression-tuned DNNs.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 50 条
  • [31] The comparison of Faster R-CNN and Atrous Faster R-CNN in different distance and light condition
    Srijakkot, K.
    Kanjanasurat, I.
    Wiriyakrieng, N.
    Benjangkaprasert, C.
    2019 12TH INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING, 2020, 1457
  • [32] Ganster R-CNN: Occluded Object Detection Network Based on Generative Adversarial Nets and Faster R-CNN
    Sun, Kelei
    Wen, Qiufen
    Zhou, Huaping
    IEEE ACCESS, 2022, 10 : 105022 - 105030
  • [33] Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images
    M. Emin Sahin
    Hasan Ulutas
    Esra Yuce
    Mustafa Fatih Erkoc
    Neural Computing and Applications, 2023, 35 : 13597 - 13611
  • [34] Faster R-CNN for Detection of Carotid Plaque on Ultrasound Images
    An, Xiangjing
    Ye, Guoliang
    Zhou, Xiaoan
    Jiao, Zhibin
    Ding, Shangwei
    Xie, Yanhua
    2019 COMPUTING, COMMUNICATIONS AND IOT APPLICATIONS (COMCOMAP), 2019, : 64 - 69
  • [35] Face Detection With Different Scales Based on Faster R-CNN
    Wu, Wenqi
    Yin, Yingjie
    Wang, Xingang
    Xu, De
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (11) : 4017 - 4028
  • [36] Aerial Target Detection Based on Improved Faster R-CNN
    Feng Xiaoyu
    Mei Wei
    Hu Dashuai
    ACTA OPTICA SINICA, 2018, 38 (06)
  • [37] Improving Faster R-CNN Framework for Fast Vehicle Detection
    Hoanh Nguyen
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [38] Traffic sign detection method based on Faster R-CNN
    Wu, Linxiu
    Li, Houjie
    He, Jianjun
    Chen, Xuan
    2018 INTERNATIONAL SEMINAR ON COMPUTER SCIENCE AND ENGINEERING TECHNOLOGY (SCSET 2018), 2019, 1176
  • [39] Faster R-CNN with Classifier Fusion for Small Fruit Detection
    Mai, Xiaochun
    Zhang, Hong
    Meng, Max Q. -H.
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 7166 - 7172
  • [40] Insulator Defect Detection Based on Improved Faster R-CNN
    Tang, Jinpeng
    Wang, Jiang
    Wang, Hailin
    Wei, Jiyi
    Wei, Yijian
    Qin, Mingsheng
    2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, : 541 - 546