SUSTAINABLE FARMING - A SPATIO-TEMPORAL ADAPTATION OF LATE BLIGHT DISEASE PREDICTION USING MULTI-MODAL DATA

被引:1
|
作者
Hazra, Jagabondhu [1 ]
Padmanaban, Manikandan [1 ]
机构
[1] IBM Res, Bengaluru, India
关键词
Sustainable farming; Spatio-temporal model; Late blight disease prediction; remote sensing;
D O I
10.1109/IGARSS52108.2023.10282280
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Indiscriminate use of chemicals for farming leads to various environmental pollution- air, land, and water. Judicious use of chemicals in farming has a huge environmental benefits as well as reduction in farming cost. In this paper, we proposed a novel spatio-temporal adaptation techniques to localize the pest/disease risk using multi modal data - geo-spatial location, weather, satellite observations, and plant imageries. To illustrate the efficacy of the method, we demonstrated a case study with potato farmers which fulfilled the dual objectives of positively bringing food security and safety to our society while enabling sustainable and profitable operations.
引用
收藏
页码:313 / 316
页数:4
相关论文
共 50 条
  • [41] Comparative Presentation of Machine Learning Algorithms in Flood Prediction Using Spatio-Temporal Data
    Jangyodsuk, Piraporn
    Seo, Dong-Jun
    Elmasri, Ramez
    Gao, Jean
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2016, 386 : 1015 - 1023
  • [42] Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning
    Pan, Zheyi
    Liang, Yuxuan
    Wang, Weifeng
    Yu, Yong
    Zheng, Yu
    Zhang, Junbo
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1720 - 1730
  • [43] Prediction of ionospheric total electron content data using spatio-temporal residual network
    Shenvi, Nayana
    Chandrasekhar, E.
    Kumar, Anurag
    Virani, Hassanali
    ADVANCES IN SPACE RESEARCH, 2023, 72 (11) : 4856 - 4867
  • [44] Spatio-temporal neural network for taxi demand prediction using multisource urban data
    Wu, Chenhao
    Xiang, Longgang
    Yan, Jialin
    Zhang, Yeting
    TRANSACTIONS IN GIS, 2022, 26 (05) : 2166 - 2187
  • [45] Estimation and prediction of weather variables from surveillance data using spatio-temporal Kriging
    Dalmau, Ramon
    Perez-Batlle, Marc
    Prats, Xavier
    2017 IEEE/AIAA 36TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2017,
  • [46] Early prediction of honeybee hive winter survivability using multi-modal sensor data
    Zhu, Yi
    Abdollahi, Mahsa
    Maucourt, Segolene
    Coallier, Nico
    Guimaraes, Heitor R.
    Giovenazzo, Pierre
    Falk, Tiago H.
    PROCEEDINGS OF 2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY, METROAGRIFOR, 2023, : 657 - 662
  • [47] Automated Power System Fault Prediction and Precursor Discovery Using Multi-Modal Data
    Alqudah, Mohammad
    Kezunovic, Mladen
    Obradovic, Zoran
    IEEE ACCESS, 2023, 11 : 7283 - 7296
  • [48] Subjective preference of spatio-temporal rate in video adaptation using multi-dimensional scalable coding
    Wang, Y
    Chang, SF
    Lou, AC
    2004 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXP (ICME), VOLS 1-3, 2004, : 1719 - 1722
  • [49] MDTP: A Multi-source Deep Traffic Prediction Framework over Spatio-Temporal Trajectory Data
    Fang, Ziquan
    Pan, Lu
    Chen, Lu
    Du, Yuntao
    Gao, Yunjun
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (08): : 1289 - 1297
  • [50] Multi-modal machine learning based on electrocardiogram data for prediction of patients with ischemic heart disease
    You, Yi
    Wang, Wei
    Li, Dongze
    Jia, Yu
    Li, Dong
    Zeng, Rui
    Zhang, Lei
    ELECTRONICS LETTERS, 2023, 59 (02)