Estimation of the nonparametric mean and covariance functions for multivariate longitudinal and sparse functional data

被引:2
|
作者
Xu Tengteng [1 ]
Zhang, Riquan [1 ]
机构
[1] East China Normal Univ, Sch Stat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate longitudinal and sparse functional data; full quasi-likelihood; kernel method; covariance decomposition; leave-one-out cross validation; DENSITY-ESTIMATION; SELECTION; MODELS;
D O I
10.1080/03610926.2022.2032170
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of the mean and covariance functions is very important to analyze multivariate longitudinal and sparse functional data. We define a new covariance function that not only consider the correlation of different observed responses for the same biomarker but different biomarkers. Full quasi-likelihood and the kernel method are used to approximate mean and covariance functions, the covariance decomposition is considered to decompose covariance functions to correlation function and variance function. We use the full quasi-likelihood to solve measurement errors variance lambda and choose the iterative algorithm to update the multivariate mean and covariance functions until convergence. Gaussian kernel and leave-one-out cross-validation are used to select bandwidth h. Finally, we give theoretical properties of the unknown functions and prove their convergence. Simulation and application results show the effectiveness of our proposed method.
引用
收藏
页码:6616 / 6639
页数:24
相关论文
共 50 条
  • [41] Nonparametric density estimation for multivariate bounded data
    Bouezmarni, Taoufik
    Rombouts, Jeroen V. K.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (01) : 139 - 152
  • [42] Joint estimation of mean-covariance model for longitudinal data with basis function approximations
    Mao, Jie
    Zhu, Zhongyi
    Fung, Wing K.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (02) : 983 - 992
  • [43] Nonparametric predictive model for sparse and irregular longitudinal data
    Wang, Shixuan
    Kim, Seonjin
    Cho, Hyunkeun Ryan
    Chang, Won
    BIOMETRICS, 2024, 80 (01)
  • [44] Simultaneous nonparametric regression analysis of sparse longitudinal data
    Cao, Hongyuan
    Liu, Weidong
    Zhou, Zhou
    BERNOULLI, 2018, 24 (4A) : 3013 - 3038
  • [45] Semiparametric statistical inferences for longitudinal data with nonparametric covariance modelling
    Xu, Qunfang
    Bai, Yang
    STATISTICS, 2017, 51 (06) : 1280 - 1303
  • [46] JOINT MODELING OF MULTISTATE AND NONPARAMETRIC MULTIVARIATE LONGITUDINAL DATA
    You, Lu
    Salami, Falastin
    Torn, Carina
    Lernmark, Ake
    Tamura, Roy
    ANNALS OF APPLIED STATISTICS, 2024, 18 (03): : 2444 - 2461
  • [47] Unconstrained models for the covariance structure of multivariate longitudinal data
    Kim, Chulmin
    Zimmerman, Dale L.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 107 : 104 - 118
  • [48] ESTIMATION OF FUNCTIONAL SPARSITY IN NONPARAMETRIC VARYING COEFFICIENT MODELS FOR LONGITUDINAL DATA ANALYSIS
    Tu, Catherine Y.
    Park, Juhyun
    Wang, Haonan
    STATISTICA SINICA, 2020, 30 (01) : 439 - 465
  • [49] Tests for equality of several mean vector functions for multivariate functional data with applications
    Qiu, Zhiping
    Fan, Jiangyuan
    Zhang, Jin-Ting
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024,
  • [50] Robust semiparametric modeling of mean and covariance in longitudinal data
    Ran, Mengfei
    Yang, Yihe
    Kano, Yutaka
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2023, 6 (02) : 625 - 648