Estimation of the nonparametric mean and covariance functions for multivariate longitudinal and sparse functional data

被引:2
|
作者
Xu Tengteng [1 ]
Zhang, Riquan [1 ]
机构
[1] East China Normal Univ, Sch Stat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate longitudinal and sparse functional data; full quasi-likelihood; kernel method; covariance decomposition; leave-one-out cross validation; DENSITY-ESTIMATION; SELECTION; MODELS;
D O I
10.1080/03610926.2022.2032170
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of the mean and covariance functions is very important to analyze multivariate longitudinal and sparse functional data. We define a new covariance function that not only consider the correlation of different observed responses for the same biomarker but different biomarkers. Full quasi-likelihood and the kernel method are used to approximate mean and covariance functions, the covariance decomposition is considered to decompose covariance functions to correlation function and variance function. We use the full quasi-likelihood to solve measurement errors variance lambda and choose the iterative algorithm to update the multivariate mean and covariance functions until convergence. Gaussian kernel and leave-one-out cross-validation are used to select bandwidth h. Finally, we give theoretical properties of the unknown functions and prove their convergence. Simulation and application results show the effectiveness of our proposed method.
引用
收藏
页码:6616 / 6639
页数:24
相关论文
共 50 条
  • [31] A NONPARAMETRIC ESTIMATOR FOR THE COVARIANCE FUNCTION OF FUNCTIONAL DATA
    Sancetta, Alessio
    ECONOMETRIC THEORY, 2015, 31 (06) : 1359 - 1381
  • [32] Robust estimation in joint mean-covariance regression model for longitudinal data
    Zheng, Xueying
    Fung, Wing Kam
    Zhu, Zhongyi
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (04) : 617 - 638
  • [33] Joint estimation for single index mean-covariance models with longitudinal data
    Guo, Chaohui
    Yang, Hu
    Lv, Jing
    Wu, Jibo
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (04) : 526 - 543
  • [34] NONPARAMETRIC REGRESSION ANALYSIS OF MULTIVARIATE LONGITUDINAL DATA
    Xiang, Dongdong
    Qiu, Peihua
    Pu, Xiaolong
    STATISTICA SINICA, 2013, 23 (02) : 769 - 789
  • [35] Nonparametric mean estimation with missing data
    González-Manteiga, W
    Pérez-González, A
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (02) : 277 - 303
  • [36] Adaptive estimation of irregular mean and covariance functions
    Golovkine, Steven
    Klutchnikoff, Nicolas
    Patilea, Valentin
    BERNOULLI, 2025, 31 (02) : 1032 - 1057
  • [37] Estimation of covariance matrix of multivariate longitudinal data using modified Choleksky and hypersphere decompositions
    Lee, Keunbaik
    Cho, Hyunsoon
    Kwak, Min-Sun
    Jang, Eun Jin
    BIOMETRICS, 2020, 76 (01) : 75 - 86
  • [38] Estimation and inference of the joint conditional distribution for multivariate longitudinal data using nonparametric copulas
    Kwak, Minjung
    JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (03) : 491 - 514
  • [39] NONPARAMETRIC ESTIMATION OF FUNCTIONS IN A MODEL OF COMPETING RISKS FROM INCOMPLETE LONGITUDINAL DATA
    MODE, CJ
    MATHEMATICAL BIOSCIENCES, 1979, 45 (1-2) : 1 - 20
  • [40] Smoothing and Mean-Covariance Estimation of Functional Data with a Bayesian Hierarchical Model
    Yang, Jingjing
    Zhu, Hongxiao
    Choi, Taeryon
    Cox, Dennis D.
    BAYESIAN ANALYSIS, 2016, 11 (03): : 649 - 670