Information Propagation Prediction Based on Spatial-Temporal Attention and Heterogeneous Graph Convolutional Networks

被引:27
|
作者
Liu, Xiaoyang [1 ]
Miao, Chenxiang [1 ]
Fiumara, Giacomo [2 ]
De Meo, Pasquale [3 ]
机构
[1] Chongqing Univ Technol, Sch Comp Sci & Engn, Chongqing 400054, Peoples R China
[2] Univ Messina, MIFT Dept, I-98166 Messina, Italy
[3] Univ Messina, Dept Comp Sci, I-98166 Messina, Italy
关键词
Behavioral sciences; Predictive models; Social networking (online); Market research; Deep learning; Time factors; Heterogeneous networks; Heterogeneous network; multihead attention mechanism; propagation prediction; temporal-spatial attention mechanism;
D O I
10.1109/TCSS.2023.3244573
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of deep learning and other technologies, the research of information propagation prediction has also achieved important research achievements. However, the existing information diffusion studies either focus on the attention relationships of users or they predict the information according to the diffusion relationships of users, which makes the prediction results have certain limitations. Therefore, a prediction model has been proposed spatial-temporal attention heterogeneous graph convolutional networks (STAHGCNs). First, we use GCN to learn user influence relationships and user behavior relationships, and we propose a user representation fusion mechanism to learn the user characteristics. Second, to account for the dynamics of user behavior, a temporal attention mechanism strategy is used to encode time into the heterogeneous graph to obtain a more expressive user representation. Finally, the obtained user representation is input into the multihead attention mechanism for information propagation prediction. Experimental results performed on the Twitter, Douban, Digg, and Memetracker datasets have shown that the proposed STAHGCN model increased by 8.80% and 6.74% at hits@N and map@N, respectively, which are significantly better than the original latest DyHGCN model. The proposed STAHGCN model effectively integrates spatial factors, such as time factor, user influence, and behavior, which greatly improves the accuracy of information propagation prediction and has great significance for rumor monitoring and malicious account detection.
引用
收藏
页码:945 / 958
页数:14
相关论文
共 50 条
  • [1] Attention based spatial-temporal graph convolutional networks for boiler NOx prediction
    Zhou, Yongqing
    Hao, Dawei
    Fan, Yuchen
    Wen, Xintong
    Wei, Chang
    Liu, Xin
    Zhang, Wenzhen
    Wang, Heyang
    Meitan Xuebao/Journal of the China Coal Society, 2024, 49 (10): : 4127 - 4137
  • [2] Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction
    Li, Cong
    Zhang, Huyin
    Wang, Zengkai
    Wu, Yonghao
    Yang, Fei
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [3] Trajectory Prediction with Attention-Based Spatial-Temporal Graph Convolutional Networks for Autonomous Driving
    Li, Hongbo
    Ren, Yilong
    Li, Kaixuan
    Chao, Wenjie
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [4] InfoSTGCAN: An Information-Maximizing Spatial-Temporal Graph Convolutional Attention Network for Heterogeneous Human Trajectory Prediction
    Ruan, Kangrui
    Di, Xuan
    COMPUTERS, 2024, 13 (06)
  • [5] Context based spatial-temporal graph convolutional networks for traffic prediction
    Jia, Chaolong
    Zhang, Wenjing
    He, Yumei
    Wang, Rong
    Li, Jinchao
    Xiao, Yunpeng
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [6] Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Guo, Shengnan
    Lin, Youfang
    Feng, Ning
    Song, Chao
    Wan, Huaiyu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 922 - 929
  • [7] Railway Delay Prediction with Spatial-Temporal Graph Convolutional Networks
    Heglund, Jacob S. W.
    Taleongpong, Panukorn
    Hu, Simon
    Tran, Huy T.
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [8] Dynamic Spatial-Temporal Heterogeneous Graph Convolutional Network for Traffic Prediction
    Jin, Hengqing
    Pu, Lipeng
    Lecture Notes in Electrical Engineering, 2024, 1253 LNEE : 60 - 68
  • [9] Forecasting traffic flow with spatial-temporal convolutional graph attention networks
    Zhang, Xiyue
    Xu, Yong
    Shao, Yizhen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15457 - 15479
  • [10] Attention-based spatial-temporal multi-graph convolutional networks for casualty prediction of terrorist attacks
    Hou, Zhiwen
    Zhou, Yuchen
    Wu, Xiaowei
    Bu, Fanliang
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6307 - 6328