Information Propagation Prediction Based on Spatial-Temporal Attention and Heterogeneous Graph Convolutional Networks

被引:27
|
作者
Liu, Xiaoyang [1 ]
Miao, Chenxiang [1 ]
Fiumara, Giacomo [2 ]
De Meo, Pasquale [3 ]
机构
[1] Chongqing Univ Technol, Sch Comp Sci & Engn, Chongqing 400054, Peoples R China
[2] Univ Messina, MIFT Dept, I-98166 Messina, Italy
[3] Univ Messina, Dept Comp Sci, I-98166 Messina, Italy
关键词
Behavioral sciences; Predictive models; Social networking (online); Market research; Deep learning; Time factors; Heterogeneous networks; Heterogeneous network; multihead attention mechanism; propagation prediction; temporal-spatial attention mechanism;
D O I
10.1109/TCSS.2023.3244573
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of deep learning and other technologies, the research of information propagation prediction has also achieved important research achievements. However, the existing information diffusion studies either focus on the attention relationships of users or they predict the information according to the diffusion relationships of users, which makes the prediction results have certain limitations. Therefore, a prediction model has been proposed spatial-temporal attention heterogeneous graph convolutional networks (STAHGCNs). First, we use GCN to learn user influence relationships and user behavior relationships, and we propose a user representation fusion mechanism to learn the user characteristics. Second, to account for the dynamics of user behavior, a temporal attention mechanism strategy is used to encode time into the heterogeneous graph to obtain a more expressive user representation. Finally, the obtained user representation is input into the multihead attention mechanism for information propagation prediction. Experimental results performed on the Twitter, Douban, Digg, and Memetracker datasets have shown that the proposed STAHGCN model increased by 8.80% and 6.74% at hits@N and map@N, respectively, which are significantly better than the original latest DyHGCN model. The proposed STAHGCN model effectively integrates spatial factors, such as time factor, user influence, and behavior, which greatly improves the accuracy of information propagation prediction and has great significance for rumor monitoring and malicious account detection.
引用
收藏
页码:945 / 958
页数:14
相关论文
共 50 条
  • [21] Spatial-Temporal Graph Convolutional Networks for Parking Space Prediction in Smart Cities
    Xiao, Xiao
    Jin, Zhiling
    Hui, Yilong
    Cheng, Nan
    Luan, Tom H.
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [22] Attention-based global and local spatial-temporal graph convolutional network for vehicle emission prediction
    Fei, Xihong
    Ling, Qiang
    NEUROCOMPUTING, 2023, 521 : 41 - 55
  • [23] Multi-stage attention spatial-temporal graph networks for traffic prediction
    Yin, Xueyan
    Wu, Genze
    Wei, Jinze
    Shen, Yanming
    Qi, Heng
    Yin, Baocai
    NEUROCOMPUTING, 2021, 428 : 42 - 53
  • [24] Attention module-based spatial-temporal graph convolutional networks for skeleton-based action recognition
    Kong, Yinghui
    Li, Li
    Zhang, Ke
    Ni, Qiang
    Han, Jungong
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (04)
  • [25] Adaptive Graph Spatial-Temporal Attention Networks for long lead ENSO prediction
    Liang, Chengyu
    Sun, Zhengya
    Shu, Gaojin
    Li, Wenhui
    Li, An-An
    Wei, Zhiqiang
    Yin, Bo
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [26] Multivariate and Propagation Graph Attention Network for Spatial-Temporal Prediction with Outdoor Cellular Traffic
    Lin, Chung-Yi
    Su, Hung-Ting
    Tung, Shen-Lung
    Hsu, Winston H.
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3248 - 3252
  • [27] Spatial-temporal attention-based convolutional network with text and numerical information for stock price prediction
    Lin, Chin-Teng
    Wang, Yu-Ka
    Huang, Pei-Lun
    Shi, Ye
    Chang, Yu-Cheng
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (17): : 14387 - 14395
  • [28] Spatial-temporal attention-based convolutional network with text and numerical information for stock price prediction
    Chin-Teng Lin
    Yu-Ka Wang
    Pei-Lun Huang
    Ye Shi
    Yu-Cheng Chang
    Neural Computing and Applications, 2022, 34 : 14387 - 14395
  • [29] Network Traffic Prediction Method Based on Multi-Channel Spatial-Temporal Graph Convolutional Networks
    He, Yechen
    Yang, Yang
    Zhao, Binnan
    Gao, Zhipeng
    Rui, Lanlan
    2022 IEEE 14TH INTERNATIONAL CONFERENCE ON ADVANCED INFOCOMM TECHNOLOGY (ICAIT 2022), 2022, : 25 - 30
  • [30] STA-GCN: Spatial-Temporal Self-Attention Graph Convolutional Networks for Traffic-Flow Prediction
    Chang, Zhihong
    Liu, Chunsheng
    Jia, Jianmin
    APPLIED SCIENCES-BASEL, 2023, 13 (11):