Trajectory Prediction with Attention-Based Spatial-Temporal Graph Convolutional Networks for Autonomous Driving

被引:2
|
作者
Li, Hongbo [1 ,2 ]
Ren, Yilong [1 ,2 ]
Li, Kaixuan [1 ]
Chao, Wenjie [1 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
[2] Zhongguancun Lab, Beijing 100094, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 23期
关键词
autonomous vehicle; trajectory prediction; intersection scene; graph convolutional networks; NGSIM; NEURAL-NETWORKS; INTERSECTIONS;
D O I
10.3390/app132312580
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurate and reliable trajectory prediction is crucial for autonomous vehicles to achieve safe and efficient operation. Vehicles perceive the historical trajectories of moving objects and make predictions of behavioral intentions for a future period of time. With the predicted trajectories of moving objects such as obstacle vehicles, pedestrians, and non-motorized vehicles as inputs, self-driving vehicles can make more rational driving decisions and plan more reasonable and safe vehicle motion behaviors. However, due to traffic environments such as intersection scenes with highly interdependent and dynamic attributes, the task of motion anticipation becomes challenging. Existing works focus on the mutual relationships among vehicles while ignoring other potential essential interactions such as vehicle-traffic rules. These studies have not yet deeply explored the intensive learning of interactions between multi-agents, which may result in evaluation deviations. Aiming to meet these issues, we have designed a novel framework, namely trajectory prediction with attention-based spatial-temporal graph convolutional networks (TPASTGCN). In our proposal, the multi-agent interaction mechanisms, including vehicle-vehicle and vehicle-traffic rules, are meticulously highlighted and integrated into one homogeneous graph by transferring the time-series data of traffic lights into the spatial-temporal domains. Through integrating the attention mechanism into the adjacency matrix, we effectively learn the different strengths of interactive association and improve the model's ability to capture critical features. Simultaneously, we construct a hierarchical structure employing the spatial GCN and temporal GCN to extract the spatial dependencies of traffic networks. Profiting from the gated recurrent unit (GRU), the scene context in temporal dimensions is further attained and enhanced with the encoder. In such a way, the GCN and GRU networks are fused as a features extractor module in the proposed framework. Finally, the future potential trajectories generation tasks are performed by another GRU network. Experiments on real-world datasets demonstrate the superior performance of the scheme compared with several baselines.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer
    Zhang, Kunpeng
    Feng, Xiaoliang
    Wu, Lan
    He, Zhengbing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 22343 - 22353
  • [2] Graph-Based Spatial-Temporal Convolutional Network for Vehicle Trajectory Prediction in Autonomous Driving
    Sheng, Zihao
    Xu, Yunwen
    Xue, Shibei
    Li, Dewei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 17654 - 17665
  • [3] Trajectory prediction for autonomous driving based on multiscale spatial-temporal graph
    Tang, Luqi
    Yan, Fuwu
    Zou, Bin
    Li, Wenbo
    Lv, Chen
    Wang, Kewei
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (02) : 386 - 399
  • [4] Attention-based spatial-temporal multi-graph convolutional networks for casualty prediction of terrorist attacks
    Hou, Zhiwen
    Zhou, Yuchen
    Wu, Xiaowei
    Bu, Fanliang
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6307 - 6328
  • [5] Channel attention-based spatial-temporal graph neural networks for traffic prediction
    Wang, Bin
    Gao, Fanghong
    Tong, Le
    Zhang, Qian
    Zhu, Sulei
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 58 (01) : 81 - 94
  • [6] Attention-based dynamic spatial-temporal graph convolutional networks for traffic speed forecasting
    Zhao, Jianli
    Liu, Zhongbo
    Sun, Qiuxia
    Li, Qing
    Jia, Xiuyan
    Zhang, Rumeng
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 204
  • [7] Attention based spatial-temporal graph convolutional networks for boiler NOx prediction
    Zhou, Yongqing
    Hao, Dawei
    Fan, Yuchen
    Wen, Xintong
    Wei, Chang
    Liu, Xin
    Zhang, Wenzhen
    Wang, Heyang
    Meitan Xuebao/Journal of the China Coal Society, 2024, 49 (10): : 4127 - 4137
  • [8] Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction
    Li, Cong
    Zhang, Huyin
    Wang, Zengkai
    Wu, Yonghao
    Yang, Fei
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [9] STAFGCN: a spatial-temporal attention-based fusion graph convolution network for pedestrian trajectory prediction
    Liu, Guihong
    Pan, Chenying
    Zhang, Xiaoyan
    Leng, Qiangkui
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2025, 73 (01)
  • [10] Attention-based global and local spatial-temporal graph convolutional network for vehicle emission prediction
    Fei, Xihong
    Ling, Qiang
    NEUROCOMPUTING, 2023, 521 : 41 - 55