An ensembled remaining useful life prediction method with data fusion and stage division

被引:19
|
作者
Li, Yajing [1 ]
Wang, Zhijian [1 ,2 ]
Li, Feng [3 ]
Li, Yanfeng [1 ]
Zhang, Xiaohong [4 ]
Shi, Hui [5 ]
Dong, Lei [1 ]
Ren, Weibo [1 ]
机构
[1] North Univ China, Sch Mech Engn, Taiyuan 030051, Shanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Key Lab, Educ Minist Modern Design & Rotor Bearing Syst, Xian 710049, Shanxi, Peoples R China
[3] Taiyuan Univ Technol, Sch Aeronaut & Astronaut, Taiyuan 030024, Peoples R China
[4] Taiyuan Univ Sci & Technol, Sch Econ & Management, Taiyuan 030024, Peoples R China
[5] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Remaining useful life prediction; Data fusion; Multi-sensor; Stage division; Rolling bearings; PROGNOSTICS;
D O I
10.1016/j.ress.2023.109804
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The remaining useful life (RUL) prediction method based on multi-sensor vibration data is a significant component of predictive maintenance for rolling bearings. However, during the fusion process, it is easy to overlook the consistency of multi-sensor vibration data and cannot adaptively divide degradation stages, resulting in a decrease in the accuracy of the prediction method and limits its applicability in industrial settings. Therefore, this article proposes an integrated prediction method for the RUL of rolling bearings based on data fusion and stage division. Firstly, a data-level fusion method based on multi-sensor vibration signals (MSDF) is proposed. This method dynamically weights sensor data, aiming to consider consistency and reliability in order to achieve data level fusion for multi-sensor vibration signals. Secondly, a stage division method is proposed, which adaptively divides the degradation process into three stages to guide data fusion and ensemble prediction results. Finally, the feature complementarity based ensemble prediction (TCEP) model is proposed to enhance prediction accuracy by learning the degradation difference information of features throughout the prediction process. Furthermore, the outstanding performance of the proposed method was validated using two sets of bearing lifetime vibration signal datasets.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Development of a Data-Driven Method for Online Battery Remaining-Useful-Life Prediction
    Hell, Sebastian Matthias
    Kim, Chong Dae
    BATTERIES-BASEL, 2022, 8 (10):
  • [42] An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings
    Peng, Yanfeng
    Cheng, Junsheng
    Liu, Yanfei
    Li, Xuejun
    Peng, Zhihua
    FRONTIERS OF MECHANICAL ENGINEERING, 2018, 13 (02) : 301 - 310
  • [43] Parallel GhostNet classification prediction method for supercapacitor remaining useful life prediction
    Lu, Quan
    Ju, Wenju
    Yin, Linfei
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [44] An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings
    Yanfeng Peng
    Junsheng Cheng
    Yanfei Liu
    Xuejun Li
    Zhihua Peng
    Frontiers of Mechanical Engineering, 2018, 13 : 301 - 310
  • [45] Trajectory Similarity-Based Prediction with Information Fusion for Remaining Useful Life
    Wang, Zhongyu
    Tang, Wang
    Pi, Dechang
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2017, 2017, 10585 : 270 - 278
  • [46] Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method
    Lyu, Zhiqiang
    Gao, Renjing
    Chen, Lin
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (06) : 6228 - 6240
  • [47] Data-driven prognostic framework for remaining useful life prediction
    Motrani A.
    Noureddine R.
    International Journal of Industrial and Systems Engineering, 2023, 43 (02) : 210 - 221
  • [48] Prediction of Remaining Useful Life of Battery Using Partial Discharge Data
    Hussain, Qaiser
    Yun, Sunguk
    Jeong, Jaekyun
    Lee, Mangyu
    Kim, Jungeun
    ELECTRONICS, 2024, 13 (17)
  • [49] Motor Insulation Remaining Useful Life Prediction Method Based on Accelerating Degradation Data and Field Degradation Data
    Jian Z.
    Qin Z.
    Xiaoyan H.
    Youtong F.
    Jie T.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2023, 38 (03): : 599 - 609
  • [50] Remaining Useful Life Prediction via a Data-Driven Deep Learning Fusion Model-CALAP
    Wu, Mingyan
    Ye, Qing
    Mu, Jianxin
    Fu, Zuyu
    Han, Yilin
    IEEE ACCESS, 2023, 11 : 112085 - 112096