Multi-Agent Reinforcement Learning for Highway Platooning

被引:4
|
作者
Kolat, Mate [1 ]
Becsi, Tamas [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Control Transportat & Vehicle Syst, H-1111 Budapest, Hungary
关键词
deep learning; reinforcement learning; platooning; road traffic control; multi-agent systems; VEHICLE; GAME;
D O I
10.3390/electronics12244963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advent of autonomous vehicles has opened new horizons for transportation efficiency and safety. Platooning, a strategy where vehicles travel closely together in a synchronized manner, holds promise for reducing traffic congestion, lowering fuel consumption, and enhancing overall road safety. This article explores the application of Multi-Agent Reinforcement Learning (MARL) combined with Proximal Policy Optimization (PPO) to optimize autonomous vehicle platooning. We delve into the world of MARL, which empowers vehicles to communicate and collaborate, enabling real-time decision making in complex traffic scenarios. PPO, a cutting-edge reinforcement learning algorithm, ensures stable and efficient training for platooning agents. The synergy between MARL and PPO enables the development of intelligent platooning strategies that adapt dynamically to changing traffic conditions, minimize inter-vehicle gaps, and maximize road capacity. In addition to these insights, this article introduces a cooperative approach to Multi-Agent Reinforcement Learning (MARL), leveraging Proximal Policy Optimization (PPO) to further optimize autonomous vehicle platooning. This cooperative framework enhances the adaptability and efficiency of platooning strategies, marking a significant advancement in the pursuit of intelligent and responsive autonomous vehicle systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multi-agent Reinforcement Learning in Network Management
    Bagnasco, Ricardo
    Serrat, Joan
    SCALABILITY OF NETWORKS AND SERVICES, PROCEEDINGS, 2009, 5637 : 199 - 202
  • [32] Multi-agent Reinforcement Learning for Service Composition
    Lei, Yu
    Yu, Philip S.
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2016), 2016, : 790 - 793
  • [33] Multi-agent reinforcement learning with adaptive mimetism
    Yamaguchi, T
    Miura, M
    Yachida, M
    ETFA '96 - 1996 IEEE CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, PROCEEDINGS, VOLS 1 AND 2, 1996, : 288 - 294
  • [34] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [35] Multi-Agent Reinforcement Learning with Reward Delays
    Zhang, Yuyang
    Zhang, Runyu
    Gu, Yuantao
    Li, Na
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [36] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [37] Quantum Multi-Agent Meta Reinforcement Learning
    Yun, Won Joon
    Park, Jihong
    Kim, Joongheon
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11087 - 11095
  • [38] Multi-agent reinforcement learning for intrusion detection
    Servin, Arturo
    Kudenko, Daniel
    ADAPTIVE AGENTS AND MULTI-AGENT SYSTEMS, 2008, 4865 : 211 - 223
  • [39] Multi-Agent Adversarial Inverse Reinforcement Learning
    Yu, Lantao
    Song, Jiaming
    Ermon, Stefano
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [40] Reinforcement learning based on multi-agent in RoboCup
    Zhang, W
    Li, JG
    Ruan, XG
    ADVANCES IN INTELLIGENT COMPUTING, PT 1, PROCEEDINGS, 2005, 3644 : 967 - 975