Multi-Agent Reinforcement Learning for Highway Platooning

被引:4
|
作者
Kolat, Mate [1 ]
Becsi, Tamas [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Control Transportat & Vehicle Syst, H-1111 Budapest, Hungary
关键词
deep learning; reinforcement learning; platooning; road traffic control; multi-agent systems; VEHICLE; GAME;
D O I
10.3390/electronics12244963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advent of autonomous vehicles has opened new horizons for transportation efficiency and safety. Platooning, a strategy where vehicles travel closely together in a synchronized manner, holds promise for reducing traffic congestion, lowering fuel consumption, and enhancing overall road safety. This article explores the application of Multi-Agent Reinforcement Learning (MARL) combined with Proximal Policy Optimization (PPO) to optimize autonomous vehicle platooning. We delve into the world of MARL, which empowers vehicles to communicate and collaborate, enabling real-time decision making in complex traffic scenarios. PPO, a cutting-edge reinforcement learning algorithm, ensures stable and efficient training for platooning agents. The synergy between MARL and PPO enables the development of intelligent platooning strategies that adapt dynamically to changing traffic conditions, minimize inter-vehicle gaps, and maximize road capacity. In addition to these insights, this article introduces a cooperative approach to Multi-Agent Reinforcement Learning (MARL), leveraging Proximal Policy Optimization (PPO) to further optimize autonomous vehicle platooning. This cooperative framework enhances the adaptability and efficiency of platooning strategies, marking a significant advancement in the pursuit of intelligent and responsive autonomous vehicle systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [22] Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
    Xu, Zhiwei
    Zhang, Bin
    Li, Dapeng
    Zhang, Zeren
    Zhou, Guangchong
    Chen, Hao
    Fan, Guoliang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11726 - 11734
  • [23] Concept Learning for Interpretable Multi-Agent Reinforcement Learning
    Zabounidis, Renos
    Campbell, Joseph
    Stepputtis, Simon
    Hughes, Dana
    Sycara, Katia
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1828 - 1837
  • [24] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [25] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [26] Generalized learning automata for multi-agent reinforcement learning
    De Hauwere, Yann-Michael
    Vrancx, Peter
    Nowe, Ann
    AI COMMUNICATIONS, 2010, 23 (04) : 311 - 324
  • [27] Multi-agent reinforcement learning for character control
    Li, Cheng
    Fussell, Levi
    Komura, Taku
    VISUAL COMPUTER, 2021, 37 (12): : 3115 - 3123
  • [28] Parallel and distributed multi-agent reinforcement learning
    Kaya, M
    Arslan, A
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, 2001, : 437 - 441
  • [29] Reinforcement learning of multi-agent communicative acts
    Hoet S.
    Sabouret N.
    Revue d'Intelligence Artificielle, 2010, 24 (02) : 159 - 188
  • [30] Coding for Distributed Multi-Agent Reinforcement Learning
    Wang, Baoqian
    Xie, Junfei
    Atanasov, Nikolay
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 10625 - 10631